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Abstract. Deep Neural Networks (DNN) have made significant advances in var-

ious fields, including speech recognition and image processing. Typically, mod-

ern DNNs are both compute and memory intensive and as a consequence their 

deployment on edge devices is a challenging problem. A well-known technique 

to address this issue is Low-Rank Factorization (LRF), where a weight tensor is 

approximated with one or more lower-rank tensors, reducing the number of exe-

cuted instructions and memory footprint. However, finding an efficient solution 

is a complex and time-consuming process as LRF includes a huge design space 

and different solutions provide different trade-offs in terms of FLOPs, memory 

size, and prediction accuracy. In this work a methodology is presented that for-

mulates the LRF problem as a (FLOPs vs. memory vs. prediction accuracy) De-

sign Space Exploration (DSE) problem. Then, the DSE space is drastically 

pruned by removing inefficient solutions. Our experimental results prove that it 

is possible to output a limited set of solutions with better accuracy, memory, and 

FLOPs compared to the original (non-factorized) model. Our methodology has 

been developed as a standalone, parameterized module integrated into T3F li-

brary of TensorFlow 2.X. 

Keywords: Deep Neural Networks, Network Compression, Low-Rank Factori-

zation, Tensor Train, Design Space Exploration. 

1 Introduction 

In recent years, the world has witnessed the era of Artificial Intelligence (AI) revolu-

tion, especially in the fields of Machine Learning (ML) and Deep Learning (DL), at-

tracting the attention of many researchers in various applications fields [1]. Such an 

example is the Internet-of-Things (IoT) ML-based applications, where DNNs are em-

ployed on embedded devices with limited compute and memory capabilities [2]. 

mailto:kokhazad@csd.auth.gr
mailto:gkeramidas@csd.auth.gr
mailto:g.keramidas@think-silicon.com
mailto:i.stamoulis@think-silicon.com


2 

State-of-the-art DNN models consist of a vast number of parameters (hundreds of 

billions) and require trillions of computational operations not only during the training, 

but also at the inference phase [3]. Therefore, executing these models on Resource-

Constrained Devices (RCD), e.g., edge and IoT devices, is a challenging task. The prob-

lem becomes even more challenging when the target applications are characterized by 

specific real-time constraints [4]. As a result, many techniques have been recently pro-

posed to compress and accelerate DNN models [5, 6]. DNN compression methods re-

duce the model’s memory size and computational requirements without significantly 

impacting its accuracy. In general, DNN compression techniques are classified into five 

main categories [6]: pruning [7], quantization [8], compact convolutional filters [9], 

knowledge distillation [10], and low-rank factorization [11]. 

 
Fig. 1. Memory and FLOPs percentages of FC and Non-FC layers for the five different models 

considered in this work. FC layers take up a large portion of a DNN model's memory (from 

63% up to 100 %) 

Pruning techniques reduce the complexity of DNN models by removing unnecessary 

elements [7] (e.g., neurons or filters [12-14]). Quantization is a well-studied technique 

targeting to transform the 32-bit Floating-Point (FP32) weights and/or activations into 

less-accurate data types e.g., INT8 or FP16 [8]. In the compact convolutional filter 

techniques, special structural convolutional filters are designed to reduce the parameter 

space and save storage/computations [9]. Finally, knowledge distillation is the process 

of transferring the knowledge from a large model to a smaller one by following a stu-

dent-teacher learning model [15]. The two latter techniques can be applied only to the 

convolutional layers [6]. On the contrary, Low-Rank Factorization (LRF) can be used 

to reduce both the number of Floating Point Operations (FLOPs) as well as the memory 

size in both convolutional and Fully Connected (FC) layers by transforming the original 

tensors into smaller ones [11]. However, employing LRF in a neural network model is 

not trivial: it includes a huge design space and different solutions provide different 

trade-offs among FLOPs, memory size, and prediction accuracy; therefore, finding an 

efficient solution is not a trivial task. 

In this paper, we provide a methodology to guide the LRF process focusing on the 

FC layers of typical DNN models, as the FC memory arrays typically account for the 

largest percentage of overall memory size of DNN models. Fig. 1 indicates that the 

memory size of FC layers’ ranges from 63% up to 100% of the total DNN memory size. 
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The steps of the proposed methodology are as follows. First, all the FC layers’ pa-

rameters are extracted from a given DNN model. Second, all possible LRF solutions 

are generated using the T3F library [16]. Then, the vast design space is pruned in two 

phases and a (limited) set of solutions is selected for re-evaluation/calibration according 

to specific target metrics (FLOPs, memory size, and accuracy) that are provided as in-

puts to our methodology. 

The main contributions of this work are: 

• A method that formulates the LRF problem as a (FLOPs, memory size, accu-
racy) DSE problem 

• A step-by-step methodology that effectively prunes the design space 

• A fully parameterized and standalone DSE tool integrated into T3F library (part 
of TensorFlow 2.X [17]) 

• An evaluation of the proposed DSE approach on five popular DNN models 

The rest of this paper is organized as follows: In Section 2, we put this work in the 

context of related work and present the relevant background information. The proposed 

methodology is presented in a step-by-step basis in Section 3, while the experimental 

results are discussed in Section 4. Finally, Section 5 is dedicated to conclusions and 

future work. 

2 Background and Related Works 

2.1 Low-Rank Factorization 

LRF refers to the process of approximating and decomposing a matrix or a tensor by 

using smaller matrices or tensors [18]. Suppose 𝑀 ∈ ℝ𝑚×𝑛 is a matrix with m rows and 

n columns. Given a rank r, M can be approximated by 𝑀′ ∈ ℝ𝑚×𝑛; M  has a lower 

rank k and it can be represented by the product of two (or more) thinner matrices 𝑈 ∈

ℝ𝑚×𝑘and 𝑉 ∈ ℝ𝑘×𝑛 with m rows/k columns and k rows/n columns, respectively (as 

shown in Fig. 2). The element (i,j) from M is retrieved by multiplying the i-th row of 

U by the j-th column of V. The original matrix M needs to store m n elements, while 

the approximated matrix M   needs to store ( ) ( )m k k n +  elements [18]. 

j
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i

j

˟ 

 
Fig. 2. Low-Rank Factorization (LRF) 

To decompose the input matrices, different methods exist, such as Singular Value De-

composition (SVD) [19-21], QR decomposition [22, 23], interpolative decomposition 
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[24], and none-negative factorization [25]. Given that tensors are multidimensional 

generalizations of matrices, they need different methods to be decomposed e.g., Tucker 

Decomposition [26, 27] or Canonical Polyadic Decomposition (CPD) [28, 29]. Another 

way to decompose tensors is to transform the input tensor into a two-dimensional (2D) 

matrix and then perform the decomposition process using one of the abovementioned 

matrix decomposition techniques [30, 31]. 

2.2 Tensor-Train (TT) Format and T3F Library 

A popular method to decompose the multidimensional tensors is the TT format, pro-

posed in [32]. This is a stable method and does not suffer from curse of dimensionality 

[32]; furthermore, the number of parameters needed is similar to that in CPD [32]. A 

Tensor 
1 2( , ,...., )dA j j j with d dimensions can be represented in TT format if for each 

element with index 1,2,...,k kj n= and each dimension 1,2,...,k d= there is a collec-

tion of matrices  k kG j  such that all the elements of A can be computed by the fol-

lowing product [33]: 

 𝐴(𝑗1. 𝑗2. … . 𝑗𝑑) = 𝐺1[𝑗1]𝐺2[𝑗2] … 𝐺𝑑[𝑗𝑑] (1) 

All the matrices  k kG j related to the same dimension k are restricted to be of the 

same size 
1k kr r−  . The values 

0r  and 
dr  are equal to 1 in order to keep the matrix 

product (eq. 1) of size 1x1. 

As noted, the proposed DSE methodology is built on top of the T3F library as a fully 

parameterized, stand-alone module. T3F is a library [16] for TT-Decomposition and 

currently is only available for FC layers (however our methodology is general enough 

and can be applied also in convolution layers; however, extending the proposed meth-

odology in convolution layers is left for future work). In the current version, our target 

is the FC layers, because as depicted in Fig. 1, the FC layers occupy the largest memory 

size in typical DNN architectures. The main primitive of T3F library is TT-Matrix, a 

generalization of the Kronecker product [34]. By using the TT-format, T3F library com-

presses the 2D array of a FC layer by using a small set of parameters. 

The inputs to the modified T3F module are: i) the weight matrix of the original FC 

layer (2D array), ii) the max_tt_rank value, and iii) a set of tensor configuration param-

eters. The latter set of parameters is related to the shape of the output tensors; if these 

tensors are multiplied by each other, then the original 2D matrix can be approximated 

e.g., the following set of parameters [[7, 4, 7, 4], [5, 5, 5, 5]] approximates a matrix of 

size 784x625. In other words, by multiplying the first set of numbers ([7, 4, 7, 4]), the 

first dimension of weight matrix (784) is produced and by multiplying the second set 

of numbers ([5, 5, 5, 5]), the second dimension of weight matrix (625) is generated. The 

max_tt_rank parameter defines the density of the compression; small max_tt_rank val-

ues offer higher compression rate. After the decomposition is done, T3F library outputs 

a set of 4D tensors (called cores) with the following shapes/parameters sizes: 

Core #1 dim: 1 1(1, , ,max_ _ )s o tt rank  

Core #2 dim: 2 2(max_ _ , , ,max_ _ )tt rank s o tt rank  

Core #3 dim:
3 3(max_ _ , , ,max_ _ )tt rank s o tt rank  

Core #4 dim: 
4 4(max_ _ , , ,1)tt rank s o  
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Where s1, s2, s3, s4 and o1, o2, o3, o4 are related to the set of tensor configuration 

parameters (
1 2 3 4 1 2 3 4[[ , , , ],[ , , , ]]s s s s o o o o ). As noted, if the above tensors are multiplied 

by each other, the original 2D matrix is approximated. The overall memory size needed 

is given by the following formula (2): 

1 1(1 max_ _ )s o tt rank   + 2 2(max_ _ max_ _ )tt rank s o tt rank   +

3 3(max_ _ max_ _ )tt rank s o tt rank   + 4 4(max_ _ 1)tt rank s o    (2) 

2.3 Motivation 

The main challenge in employing LRF for a specific DNN model is to select a suitable 

rank parameter [31]. Given a predefined rank value, the process of extracting the de-

composed matrices or tensors is a well-defined and straightforward process. For exam-

ple, for an input matrix M and for a given rank value r, the (output) low rank matrix 

with the minimal or target approximation error can be generated by employing the SVD 

algorithm [35]. 

While many researchers devised techniques targeting to find the best rank value [31, 

36-38], it has been proven that this is an NP-hard problem [31]. For example, assuming 

a max rank value of 10 in LeNet5 model [39] (LeNet5 consists of three FC layers with 

dimensions 400x120, 120x84, and 84x10, respectively), the entire design space con-

tains about 252 million possible ways to configure the decomposed matrices. Given 

that a model calibration phase (typically for more than three epochs) must be employed 

for each extracted solution, this means that 252Mx3x1 seconds (approximately 8750 

days assuming that each epoch takes about 1 second) are needed to cover the whole 

design space. To the best our knowledge there is no similar work that formulates the 

LRF problem as a DSE problem. 

3 Methodology 

To address the above problem, a DSE methodology and a fully parameterized tool are 

proposed in this work. The target is to ease and guide the LRF process in FC layers. 

The main steps of the proposed methodology are shown in Fig. 3. In the rest of this 

section, a detailed description of each step in Fig. 3 is provided. 

A DNN model as 

input

Generate all possible 

LRF solutions

Calculate the number 

of FLOPs and 

memory size of each 

solution

Discard all the 

inefficient solutions of 

each layer

Prune the design 

space

Fine-tune the model
Selection of suitable 

solutions

Export the best 

solution

Exclude small layers

 
Fig. 3. The proposed DSE methodology 
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1. Exclude small layers: As noted, the first step of our approach is to extract and ana-

lyze all FC layers of a given DNN model. Among all the extracted FC layers, the layers 

with small memory sizes with respect to the overall memory footprint of the model 

(based on a threshold) are discarded. The aim of LFR is to reduce the memory size and 

computations required, thus applying LRF to layers with meager sizes does not provide 

significant memory/FLOP gains. As part of this work, a threshold with value equal to 

10% (found experimentally) is used i.e., the layers of which the memory size is less 

than 10% of the overall DNN size are not considered in our methodology. Further quan-

tifying this threshold is left for future work. 

2. Generate all possible LRF solutions: In this step, all different LRF solutions are 

extracted using our methodology and generated by using the T3F library. For all re-

maining cases, the weight matrices are converted to smaller size tensors according to 

TT format. Note that in our approach, each solution (related to a weight matrix) is ex-

tracted as a set of configuration parameters. The first one is the length (based on the 

numbers participating in the composition e.g., for 100 = 2 * 5 * 5 * 2, the combination 

length is equal to 4). The second number is the maximum rank. The maximum rank 

defines how dense the compression will be. In this step, all possible solutions are ex-

tracted for each layer individually. 

Let us give an example by using the well-known AlexNet model [40]. There are four 

FC layers in the AlexNet model; two of which are excluded by step 1. The remaining 

layers are of size 4096x4096 and 4096x1000, respectively. In both layers, 11 different 

rank values are included: {2, 3, …..., 12}. Fig. 4 depicts all different solutions for the 

first layer. As we can see, there are 7759741 different solutions for this layer. 

 

Fig. 4. All possible solutions based on T3F library for a layer of size 4096x4096 in the AlexNet 

model. Vertical axis shows the number of FLOPs (log scale) and horizontal axis shows the 

number of parameters (log scale) 

3. Calculate the number of FLOPs and memory size for each solution: The mathe-

matical expressions to calculate the required memory and FLOPs for each solution are 

given by equations (3) and (4), respectively. More specifically, assuming a FC layer 

with shape [X, Y], the memory size is given by the following formula: 
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L

i j

i j

Memory required c Y Type size
= =

= +   (3) 

Where L is amount of cores/length of combination, ci,j is j-th element in the i-th core, 

and Y is the length of bias vector. The LRF takes as input a 2D array and generates a 

number of 4D tensors (called also cores). To calculate the memory size required for a 

layer, we need first to calculate and sum up the number of parameters for each core. 

Then, the bias must be added to the calculated value. Finally, to find the required 

memory, the number of parameters is multiplied by the number of bytes for the used 

data type (e.g., 4 bytes for FP). 

The number of FLOPs is given by the following formula: 

 
41

,

1

( ( ( )))i i i i j i i

i L j

FLOPs cl cr inr c inl inr Y
= =

=   + +  +   (4) 

Where 
iinr  = 

1

1

L

j

j

x
−

=

 , 
iinl  = 

,2ic    
,4ic , 

icr =  
,2ic    

,4ic , 
icl = 

,1ic   ,3ic  and xj is 

j-th element in the input combination.  

4. Discard inefficient solutions of each layer: As mentioned above, the design space 

is vast, therefore fine-tuning or calibrating the model for all possible solutions is not 

feasible. To address this, the whole design space (illustrated as a FLOPs vs. memory 

size pareto curve) is divide into four rectangles (see Fig. 5). The top-right part (red part 

in Fig. 5) is excluded for the remaining steps, since it contains solutions that require 

more memory and more FLOPs compared to the non-factorized (initial) solution. Note 

that the blue dot in the center of the graph corresponds to the memory/FLOPs of the 

initial layer. The top-left and bottom-right parts (yellow parts) are also excluded in the 

current version of our methodology. Although the latter two parts can contain accepta-

ble solutions, we have excluded them as the solutions in these parts require more FLOPs 

(top left) or more memory (bottom right) compared to the initial model. The bottom left 

part (green part) includes solutions that exhibit less memory and less FLOPs with re-

spect to the initial layer. As part of this work, we consider only the solutions in the 

green box i.e., these solutions will be forwarded to the remaining steps of our method-

ology. The solutions included in the two yellow boxes will be re-considered in a future 

version of this work. 

5. Prune the design space: Till now, we considered each layer separately. As a next 

step, we take into consideration all the FC layers of the input DNN model in a unified 

way. In particular, in the current step, the 2D design space (green part in Fig. 5) of each 

layer is further broken down into smaller rectangles (tiles) of predefined size. In this 

paper, an 8x8 grid is considered i.e., each green rectangle in Fig. 5 is broken down into 

64 tiles. Examining alternative configurations (e.g., 4x4 or 16x16 grids) is left for future 

work. The bottom-line idea is that the solutions residing into the same tile will exhibit 

a similar behavior. To safeguard the latter approach, multiple points (solutions) from 

each tile are extracted. More specifically, the four following solutions are considered 

from each tile: 

• Point 1: min_FLOPs and min_memory 

• Point 2: min_FLOPs and max_memory 

• Point 3: max_FLOPs and min_memory  
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• Point 4: max_FLOPs and max_memory 

The four solutions above include the best and worst solutions in terms of FLOPs 

and/or memory per tile; the solutions with highest FLOPs and memory (max_FLOPs, 

max_memory) are selected as it is more likely to provide higher prediction accuracy 

(after the re-calibration/training phase). Given that there are 64 tiles, a maximum num-

ber equal to 4x64 solutions are further processed for each layer and the rest are being 

discarded. 

Max MemoryMin Memory

M
in

 F
L

O
P

s
M

a
x
 F

L
O

P
s

Not acceptable
less memory and more 

FLOPs

Not acceptable
more memory and more 

FLOPs

Not acceptable
more memory and less 

FLOPs

Acceptable
less memory and less 

FLOPs

Memory and FLOPs 

for original layer 

(Non-factorized)

 
Fig. 5. The design space is illustrated as (FLOPs vs. memory) pareto curves and partitioned 

into rectangles. The red part and yellow parts are pruned (excluded) because they contain solu-

tions with more memory and/or FLOPs compared to the original (non-factorized) layer 

After the design space is pruned at a layer level, the corresponding tiles of all layers are 

merged and the four points mentioned above are extracted. However, when multiple 

FC layers co-exist in the model (which is typically the case), the approach illustrated in 

Fig. 6 is followed. The main problem that we need to tackle at this point is that different 

layers might include tiles of different scales and consequently very diverse memory and 

FLOPs requirements. To address this in our methodology, each layer is organized as a 

separate grid in order to take into account the different scales (i.e., the size of each 

layer) as depicted in Fig. 6. Note that in the case of multiple FC layers, the correspond-

ing grid cells must be selected for all layers. In the special case in which no solution 

exists in the corresponding grid tile (in one or more layers), the following two ap-

proaches are considered in our methodology: i) the nearest grid cell (to the empty cell) 

must be found and solutions from that cell are selected and ii) the grid cells that have 

at least one layer with no solution are skipped (excluded) and we only consider the grid 

cells where all layers contain at least one solution. This is illustrated in Fig. 6. 

Let us give an example based on AlexNet model. Recall that in our methodology we 

consider two layers of AlexNet model with shapes 4096x4096 and 4096x1000 (shown 

in Fig. 6). It is clear that for each grid cell in the first layer (Fig. 6.a), there is an unique 

corresponding grid cell in the second layer (Fig. 6.b). By relying in the second grid cell 

selection policy (mentioned above) for the empty cells, many solutions will be further 
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excluded and will not be considered in the following steps of the approach, further 

pruning the design space. 

Memory 

(Kilo 

Params)

FLOPs 

(M)

First layer

Memory 

(Kilo 

Params)

FLOPs 

(M)

Second layer

 

(a) (b) 
Fig. 6. An 8x8 grid corresponding to the AlexNet model. Two FC layers have been selected 

from the model for factorization. The left part of the figure (a) depicts the first layer with shape 

4096x4096 (16781K parameters) and the right part (b) shows the second layer with shape 

4096x1000 (4097K parameters). For each grid cell in the first layer (a), there is a unique grid 

cell in the second layer (c) 

6. Fine-tune the remaining solutions: After selecting different points from each tile, 

the next step is to calibrate (i.e., re-train) the model for the extracted solutions and for 

a limited number of epochs (e.g., three to five epochs). The output of the latter step is 

to accommodate each extracted solution with the following points: FLOPs, memory, 

and accuracy loss. 

Table 1. Number of solutions after each step. After step 7, solutions with accuracy degradation 

more than 1.5 % are excluded 

Method 
Parameters (M) Number of Solutions 

Dataset 
Model FC (%) Original After 

step 4 
After 
step 5 

After 
step 7 

LeNet5 0.062 0.059 
(95.8%) 

1528 M 157 M 156 150 MNIST 

LeNet300 0.267 0.267  
(100%) 

1495 M 239 M 156 137  MNIST 

VGG16 39.98 25.21    
(63%) 

7285832 
G 

1012815 
G 

144 43 CIFAR10 

Alexet 25.73 21.94 
(85.3%) 

4327 G 2454 G 140 135 CIFAR10 

Clock_Detection 0.96 0.912 
(94.9%) 

16 G 1708 M 256 215 Self-gen-
erated 

7. Selection of suitable solutions: The next and final step is to go through the output 

solutions and produce the final output based on specific high-level criteria. This means 

that after step 6 is completed (calculation of loss and accuracy for the remaining solu-

tions), we can enforce specific constrains (set by the user or the application) in terms 
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of memory footprint reduction, FLOPs reduction, and/or accuracy loss. Note that our 

approach is fully parameterized and any kind of high-level criteria can be employed 

(e.g., to exclude the solutions that have >1.5% accuracy drop). Table 1 shows in details 

the initial number of LRF solutions and the solutions that are pruned in each step of the 

proposed methodology for the five models that we consider in this work. 

   

(a) (b) (c) 

 

  

 

 (d) (e)  

Fig. 7. 3D pareto curves (memory footprint, FLOPs, and accuracy) for the five studied models: 

(a) LeNet5, (b) LeNet300, (c) VGG16, (d) AlexNet, and (e) Clock_Detection. Green circles 

correspond to the non-factorized model; blue circles indicate the solutions with accuracy drop 

less than 1.5%; red triangles show the solutions with accuracy drop more than 1.5% 

4 Experimental Results 

As noted our evaluation is based on multiple datasets and DNN models: LeNet300 and 

LeNet5 on MNIST dataset; AlexNet and VGG16 on CIFAR10 dataset; and Clock De-

tection model on self-generated data. In all cases, we compare our experimental results 

to the baseline (not factorized model). All experiments are initialized from reference 

models that we have developed from scratch and train for 100 epochs. For each com-

pressed model, we report its validation accuracy, storage (number of parameters), and 

FLOPs. We calculate FLOPs based on the assumption that each multiplication or addi-

tion are considered as one FLOPs. For example, in a forward pass through a FC layer 

with weight matrix of m × n and bias of n × 1, the considered FLOPs are 2 × m × n 

+ n. We use an 8x8 grid for all cases and we exclude the solutions with >1.5% 

accuracy drop compared to the initial model. The final results are shown in Fig. 7 

as 3D pareto curve (memory, FLOPs, and accuracy) for each evaluated model. 
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In each graph in Fig. 7, the green circles correspond to the non-factorized model, 

the blue circles are referred to the solutions with accuracy drop less than 1.5% with 

respect to the initial model, and the red triangles are referred to the solutions with ac-

curacy drop more than 1.5%. In addition, the extracted solution with the lowest memory 

footprint is annotated with the black arrow in all cases. Our experimental results on 

MNIST dataset show that we managed to achieve a 97.7% memory reduction in the 

LeNet5 model (Fig. 7.a) and 89.9% memory reduction in the LeNet300 model (Fig. 

7.b) with only 1.45% and 0.59% accuracy drop, respectively. Similar results can be 

seen in the other models as well. 

Table 2. Example solutions extracted from our methodology (numbers with green colors repre-

sent a reduction in memory footprint or number of flops or an increase in model accuracy; num-

ber with red colors correspond to accuracy drop). All numbers are normalized to the corre-

sponding parameters of the initial model 

Models 
(initial parameters) 

Memory 
reduction 

FLOPs 
reduction Accuracy Example Solutions 

LeNet5 
(Acc.=0.99, Mem.=58284, 

FLOPs=116364) 

40.6% 11.3% 0.2% highest accuracy 

97.7% 64.4% -1.45% lowest memory 

90.4% 86.2% -0.4% lowest FLOPs 

LeNet300 
(Acc.=0.979, Mem.=265600, 

FLOPs=530800) 

84% 10.7% 0.1% highest accuracy 

89.9% 9.2% -0.59% lowest memory 

88.5% 84.6% -1.3% lowest FLOPs 

VGG 16 
(Acc.=0.653, Mem.=33562624, 

FLOPs=50339840) 

62.5% 25% 3.33% highest accuracy 

99.9% 99.1% -0.55% lowest memory 

99.9% 99.1% -0.55% lowest FLOPs 

AlexNet 
(Acc.=0.6408, Mem.=20878312, 

FLOPs=41751528) 

62% 13% 13% highest accuracy 

95% 82% 0.6% lowest memory 

87% 83.9% 8.9% lowest FLOPs 

Clock_Detection 
(Acc.=0.97, Mem.=907400, 

FLOPs=1814600) 

74.5% 61.5% 2.88% highest accuracy 

91.6% 59.5% 1.64% lowest memory 

91.5% 87% -1.14% lowest FLOPs 

For clarity reasons, Table 2 present three specific example cases for all the models 

considered in this work. The three cases correspond to the solutions with: highest re-

ported accuracy, lowest memory, and lowest FLOPs. As Table 2 indicates, our meth-

odology is able to extract solutions exhibiting a reduction in memory footprint from 

40.6% (in LeNet5) up to 99.9% (in VGG16) and a reduction in number of FLOPs from 

9.2% (in LeNet300) up to 99.1% (in VGG16). Finally, it is important to note, that in 

many cases, our approach manages not only to reduce the memory footprint and the 

number of FLOPs, but also to increase the prediction accuracy of the specific models. 

More specifically, an increase in the accuracy is reported in eight out the 15 cases (up 

to 13% increase in AlexNet) as shown in Table 2. 

5 Conclusion 

In this paper, we presented a practical methodology that formulates the compression 

problem in DNN models using LRF as a DSE problem. The proposed methodology is 
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able to extract a suitable set of solutions in a reasonable time. We evaluated our meth-

odology on five different DNN models. Our experimental findings revealed that the 

proposed approach can offer a wide range of solutions that are able to compress the 

DNN models up to 97.7% with minimal impact in accuracy. Part of our future work 

includes the investigation of the additional techniques to further prune the design space. 

In addition, we plan to employ our methodology to different types of NN layers such 

as convolution layers. Finally, we also plan to extent and customize our methodology 

to NN belonging to different application areas, such as object detection, image segmen-

tation, text and video processing. 
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