

MACHINE LEARNING TECHNIQUES FOR PRIVATE 5G NETWORKS

Psachna, NKUA, 20/10/2022

Sotirios Spantideas

affordable5g.eu

Machine Learning – Fundamentals

- Machine Learning (ML) targets at solving complex problems where existing solutions require a lot of manual calculations and coordination, or at problems that have no solution using classical methods.
- These problems can be solved with machine learning techniques, replacing existing rule-based approaches with ML that are trained with historical data.

Artificial Intelligence

Any technique that enables computers to imitate human behavior.

Machine Learning

Algorithms which use statistical techniques to allow machines to improve with experiences.

> Applications In 5G/B5G

Deep Learning

Subcategory of ML which involves multi-layer neural network computation.

© 2020-2022 Affordable5G

2

Machine Learning in Networks

- There are many parameters in mobile and wireless networks, and there is no closed-form solution to optimize them.
- For such problems, an ML algorithm (eg a Neural Network NN) can contribute by predicting parameters and estimating functions based on the available data.
- The next generation 5G/B5G mobile and wireless communication technologies also require the use of optimization techniques to minimize (or maximize) certain objectives (e.g. interferences, data rate).
- Many problems in mobile and wireless communications are nonlinear or polynomial, so they must be approximately solved

ML Algorithms – Learning Process

 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance on tasks in T, as measured by P, improves with experience E.

ML Algorithms – Supervised Learning

 Supervised learning involves examining several examples of a random vector x and the label values of the vector y. The target is to predict y from an entirely new x by computing p(y|x), or certain properties of this distribution.

ML Αλγόριθμων – Unsupervised Learning

 Unsupervised Learning involves observing different instances of a random vector x with the goal of learning its probability distribution p(x) and its properties

ML Algorithms – Reinforcement Learning

 Reinforcement learning involves an agent interacting with an environment and receiving feedback (with rewards and punishments) based on the short or long-term benefits of his actions.

Categories of ML Algorithms

- **Classification**: Find the hyperplane that separates the known data classes (*Supervised Learning*).
- **Regression**: Find the mapping/equation that minimizes the error between model predictions and groundtruth values (*Supervised Learning*).
- **Clustering**: Find hidden clusters in the data based on distance criterions between data features (*Unsupervised Learning*).

Overfitting vs Underfitting

- Overfitting: Your model performs extremely well on training set, but it has poor performance on testing set.
- Underfitting: Your model has further margins to improve its performance.
- Ultimate goal of ML: Perform well on unknown data!

Supervised Learning in 5G

ML Tech

Supervised Le

- The main feature of supervised learning that differentiates it from other types (Unsupervised and Reinforcement Learning) is the initial assumption that we have a set of data (x, y - Labeled data)
- Supervised learning is beneficial for applications that have access to large amounts of data for training the algorithms, as the number of instances directly affects the convergence of the algorithm.

nique	Learning Model	Applications in Mobile and Wireless Communication
aming	Linear Regression.	Predict and model energy availability to define scheduling policies of harvest- ing nodes, providing the harvesting node with adaptation to energy availability (as in $[21]$).
	Statistical Logistic Regression.	Dynamic frequency and bandwidth allocation in self-organized LTE dense small cell deployments (as in [22]).
	Supervised Classifier.	Predict the network demand, to dynamically allocate the amount of network resources, topology setup, and bit rate, according to the connectivity performance i.e., bandwidth, latency, and jitter. (as in [23]).
	Support Vector Machines (SVM).	Path-loss prediction model for urban environments (as in [24]). Classification of the training channel state information (CSI) to select the optimal antenna indices in MIMO (as in [25]).
	Neural-Network-based approximation.	Channel Learning to infer unobservable channel state information (CSI) from an observable channel (as in [26]).
	Probabilistic Learning.	Adjustment of the TDD Uplink-Downlink configuration in XG-PON-LTE Systems to maximize the network performance based on the ongoing traffic conditions in the hybrid optical-wireless network (as in [27]).
	Artificial Neural Networks (ANN), and Multi-Layer Perceptrons (MLPs).	Modelling and approximations of objective functions for link budget and propagation loss for next-generation wireless networks (as in [28]–[32]).
	Deep Neural Networks (DNN).	Prediction and coordination of beamforming vectors at the BSs by learning mapping functions related to the environment setup, by using uplink pilot signals (as in [33]). Channel estimation and direction of arrival (DOA) estimation in MIMO (as in [34]).

Supervised Learning in 5G

- Self-organizing networks (SON) that learn to dynamically adapt to different environments
- Dynamic frequency and bandwidth allocation
- Evaluation of accurate path-loss models
- Evaluation of channel state information CSI for decision making in network operation, as well as during signal processing
- Cell selection in multi-layer networks
- Device detection for device-to-device (D2D) communications

Unsupervised Learning in 5G

 Clustering is a typical ML application that exhibits beneficial results when performed on edge devices in a mobile network

Unsupervised Learning in 5G

- Unsupervised soft-clustering algorithm to detect fog nodes of the network and upgrade them from low power nodes (LPNs) to high power nodes (HPNs)
- Cooperative spectrum sensing algorithm using a combination of k-means clustering, Gaussian mixture model and expectation maximization (EM)
- k-means clustering and its classification capabilities are very useful for selecting an efficient relay node for urban vehicular networks
- Mobile network data for trafific anomaly detection using hierarchical clustering

ML Technique	Learning Model	Applications in Mobile and Wireless Communication	
	Gaussian Mixture Model (GMM), and Expectation Maximization (EM).	Cooperative spectrum sensing (as in [54]).	
	Hierarchical Clustering.	Anomaly/Fault/Intrusion detection in mobile wireless networks (as in 55)).	
	k-means Clustering.	Storing the data center contents in clusters to reduce the data travel among distributed storage systems (as in [56]). Optimal handover estimation by clustering the UEs according to their mobility patterns (as in [57]). Relay node selection in vehicular networks (as in [58]).	
	Unsupervised Soft-Clustering.	Latency reduction by clustering fog nodes to automatically decide which low power node (LPN) is upgraded to a high power node (HPN) in heterogeneous cellular networks (as in [59]).	
nsupervised Learning	Self-organizing map (SOM) Learning.	Planning the coverage of HetNets with dynamic clusters (as in [60]).	
	Autoencoders (AE).	Channel characterization by interpreting a communication system design as an end-to-end reconstruction task, in order to jointly optimize transmitter and receiver components in a single process (as in $[61]$).	
	Adversarial Autoencoders (AAE).	Detecting anomalous behavior in wireless spectrum by using Power Spectral Density (PDS) data in an unsupervised learning setting (as in [62]).	
	Affinity Propagation Clustering.	Data-Driven Resource Management for Ultra-Dense Small Cells (as in [63]).	
	Non-parametric Bayesian Learning.	Traffic reduction in a wireless network by proactively serving predictable user demands via caching at BSs and users' devices (as in [64]).	
	Generative Deep Neural Networks (GDNN)	Capture the presence of traffic correlations that impact the readings of multiple sensors deployed in the same geographical area. (as in [65]).	

Reinforcement Learning

- Reinforcement Learning(RL) is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.
- Though both supervised and reinforcement learning use mapping between input and output, unlike supervised learning where feedback provided to the agent is correct set of actions for performing a task, reinforcement learning uses rewards and punishment as signals for positive and negative behavior.

Reinforcement Learning example

- Starting position: S9
- S6 block is a wall (cannot be crossed)
- S8 is a fire pit (reward -1)
- S4 is a diamond block (reward +1).
- Possible actions: up, down, left or right.
- Agent can follow any path, but it prefers the shortest one.

Reinforcement Learning example

Bellman Formula:

 $V(s) = \max_{a} [R(s, a) + \gamma V(s')]$

where:

- V(s) = value calculated at a particular point.
- R(s,a) = Reward at a particular state s by performing an action.
- γ = Discount factor
- V(s') = The value at the previous state.

V=0.81	V=0.9 s2	V=1 s3	s4
V=0.73	s6	V=0.9 s7	ss of the second
V=0.66	V=0.73	V=0.81	V=0.73

Agent prefers the path with incremental V's.

Heterogeneous Networks

- Why HetNets? Cope with the ever-increasing need for bit-rate, bandwidth and massive devices.
- How to increase capacity? Wider radio spectrum, multi-antenna techniques and more efficient modulation and coding schemes.
- Limitation of capacity increment techniques: In crowded environments and cell edges, performance can significantly degrade
- Solution with HetNets: Densification is to add small cells within macro networks to spread traffic loads, widely maintain performance and service quality while reusing spectrum most efficiently.
- HetNet planning: addition of low-power base stations or Remote Radio Heads (RRH) within existing macro-cells.
- Advantage: Site acquisition is easier and cheaper.
- Disadvantage: Intra-cell and Inter-cell interferences and coordination becomes more stringent.

© 2020-2022 Affordable5G

Throughput Maximization Problem

- Throughput (in bits per sec) defines the extent to which a service is demanding (e.g. video needs high Throughput).
- Quality of Service (QoS): The degree to which the network satisfy the users' requirements.
- Why Throughput Maximization is timely? Network densification + large number of mobile devices lead to
 - Increased interference.
 - Degradation of devices QoS.
- Future networks: self-organization, self-configuration of radio resources and self-optimization of network parameters.
- Radio Resource Management (RRM) is strongly related to the coverage and capacity of wireless networks. Goal of Throughput Maximization:
 - Proactively adjust the power levels of HetNet transmitters, so as to mitigate interferences.
 - Fulfill the requested throughput of individual users and accommodate their needs.

System Model & Parameters

- Urban 5G network area
- *K* macro (UMa) and/or micro UMi cells. Each cell has one Radio Unit (RU) with a total bandwidth *B*.
- *N* Physical Resource Blocks (PRBs) for transmissions with bandwidth *W*.
- OFDM modulation scheme.
- *U* UEs are located inside the network area.
- Each UE can connect to a single PRB of an RU.
- Sum-power constraint over all transmitting PRBs: $\sum_{n=1}^{N} P_{n,k} < P^{max}$
- Minimum power constraint for each PRB: $P_{n,k} > P^{min}$
- SINR of each connected UE: $SINR_u^{n,k} = \frac{P_{n,k} \cdot G_{k,u}}{(\sum_{k' \neq k}^K P_{n,k'} \cdot G_{k',u}) + N_0}$
- Throughput of each connected UE: $R_u^{n,k} = W \cdot log_2(1 + SINR_u^{n,k})$

Supporting xApps: Near-RT RIC Architecture

- O-RAN is controlled by a centralized controller (near-RT RIC), capable of regulating the power levels to maximize the network-wide throughput.
- The intelligent module of the xApp core is the Processor (code for ML).

Throughput Optimization algorithm

- Network-wide throughput maximization through power regulation.
- Proper adjustment of power levels, while simultaneously mitigating the co-channel interferences.
- Objective function: $\max_{p \in P} \sum_{k \in K} \sum_{n \in N} W \cdot log_2(1 + SINR_u^{n,k})$
- DRL terminology: The centralized agent (the near-RT RIC) interacting with a telecom environment (cellular areas) aims to maximize the objective function (the network throughput) by observing the state space (the measurement reports) and taking actions (power level adjustments).
- Following a **trial-and-error** approach, the agent gradually converges in power control policy that ensures increased network utility.

affordable5g.eu

Throughput Optimization algorithm

- Offline training prior deployment as xApp.
- Training process was performed with simulated measurements by the POSS simulator.
- In each training episode, the initial power levels are set to the average power level.
- Discount factor (γ) is associated with the extent to which the agent prefers immediate ($\gamma = 0$) or future ($\gamma = 1$) rewards.
- Learning curve of the training with εdecaying

ML algorithm rollout

© 2020-2022 Affordable5G

affordable5g.eu

© 2020-2022 Affordable5G

GET IN TOUCH

www.affordable5g.eu

✓ info@affordable5g.eu

2 @affordable5g

THIS PROJECT IS PART OF THE 5G PUBLIC AND PRIVATE PARTNERSHIP

Affordable5G project is funded by the EU's Horizon2020 programme under Grant Agreement number 957317.

THANKS FOR YOUR ATTENTION