Towards Zero Touch Configuration of 5G Non-Public Networks for Time Sensitive Networking

F. Luque-Schempp, L. Panizo, M-d-M. Gallardo, P. Merino and J. Rivas PROLE 2022

OVERVIEW

04

01. INTRODUCTION

02. ZERO TOUCH CONFIGURATION 05 OF THE 5G NPN

03. EXPERIMENTAL TESTBED **06.**

AUTOMATA LEARNING APPROACH

05. EXPERIMENTS

CONCLUSIONS & FUTURE WORK

Introduction

Industrial environments are adopting **Time Sensitive Networking** (TSN)

- Evolution of Ethernet standards (wired)
- Guarantee deterministic traffic (jitter, latency, etc.)

Factories of the Future will require mobility and remove cables \rightarrow TSN over 5G

Challenges of TSN over 5G

- New procedures and entities to relate TSN and 5G domains
 - Time synchronization, traffic prioritization/mapping
 - DS-TT (device side), NW-TT (network side), TSN Application Function
- New traffic patterns with very demanding Key Performance Indicators (KPIs)
- Dynamic configuration of a complete 5G Non-Public Network (5G-NPN)

tion KPIs)

Introduction

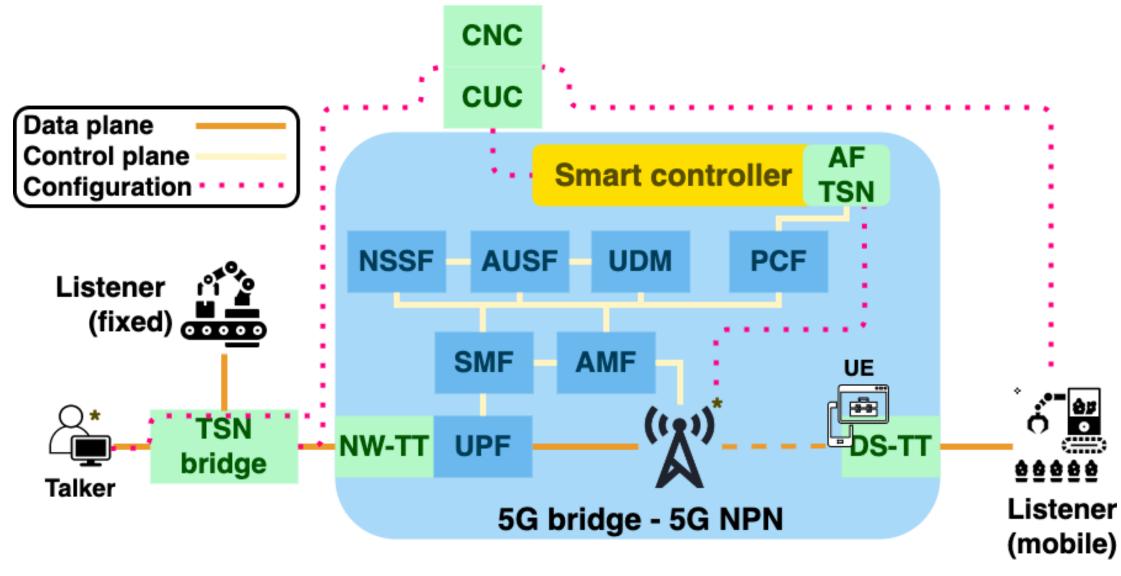
•

Novel approach to automate the network re-configuration process to support TSN over 5G

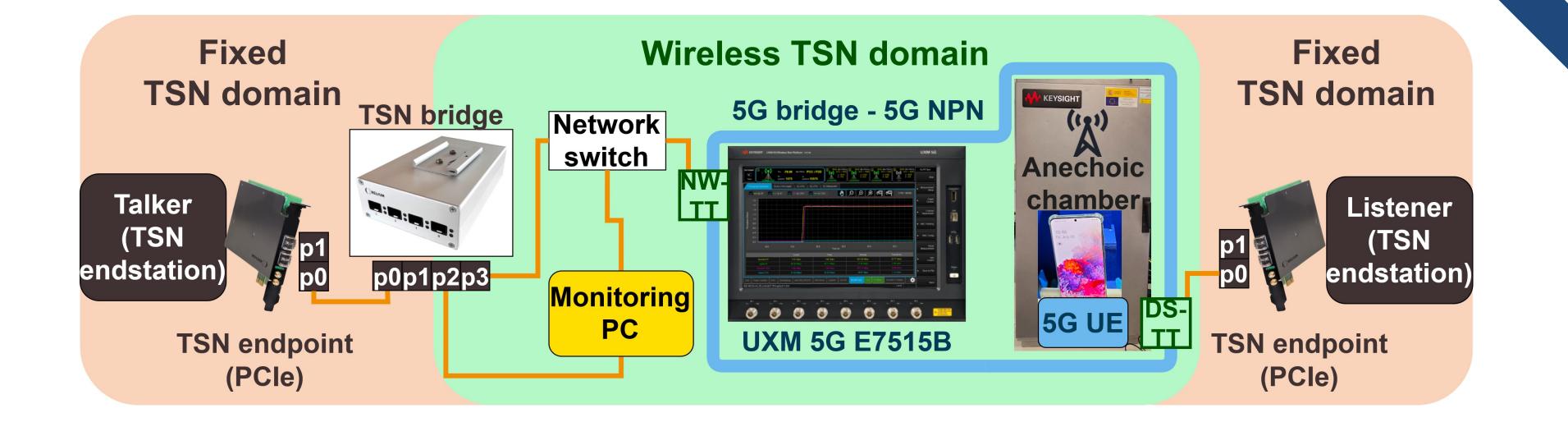
- Based on a real 5G NPN network
- Use learning techniques to produce an automata-based model of the network
- The model is used to predict the network behavior and decide the future configuration to meet the traffic requirements

Zero Touch Configuration of the 5G NPN

- The TSN endpoints (talker) *communicate in advance* their intended traffic pattern and requirements to the CUC/CNC
- The Smart controller beside CUC/CNC and TSN AF entities will be in charge of the 5G NPN configuration (RAN & core network)
- Zero touch approach: without human interaction

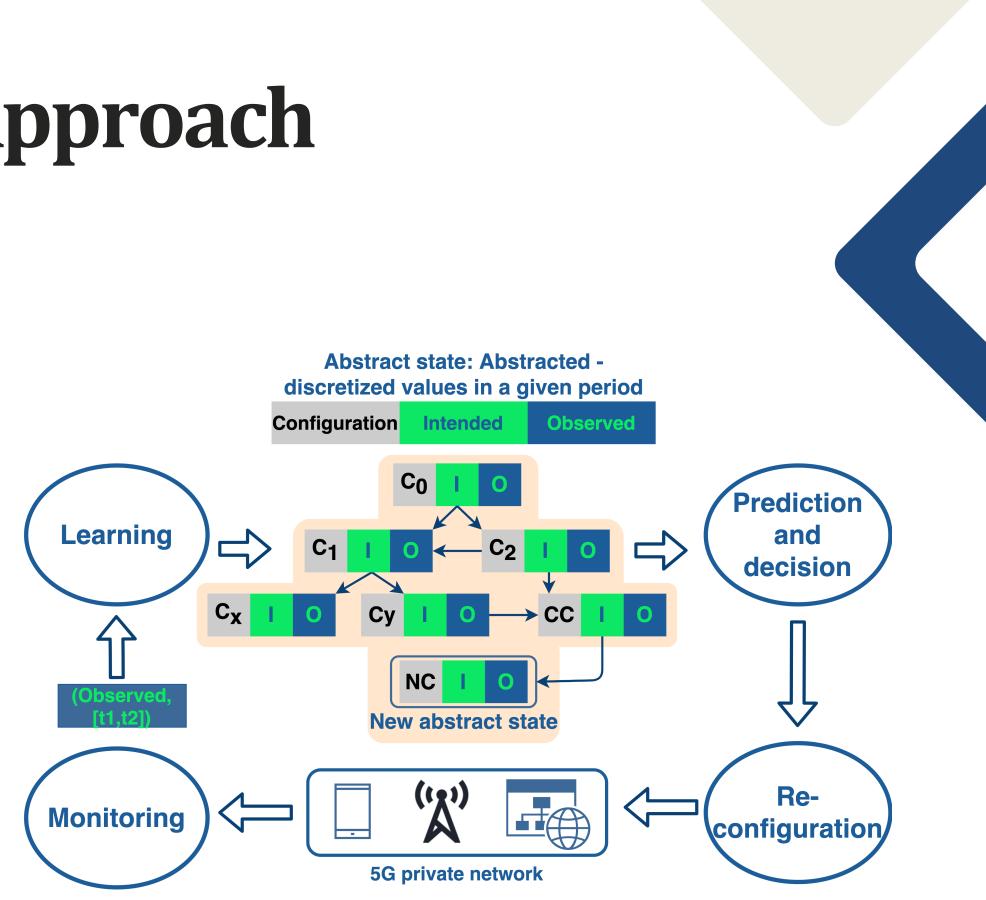


Experimental Testbed



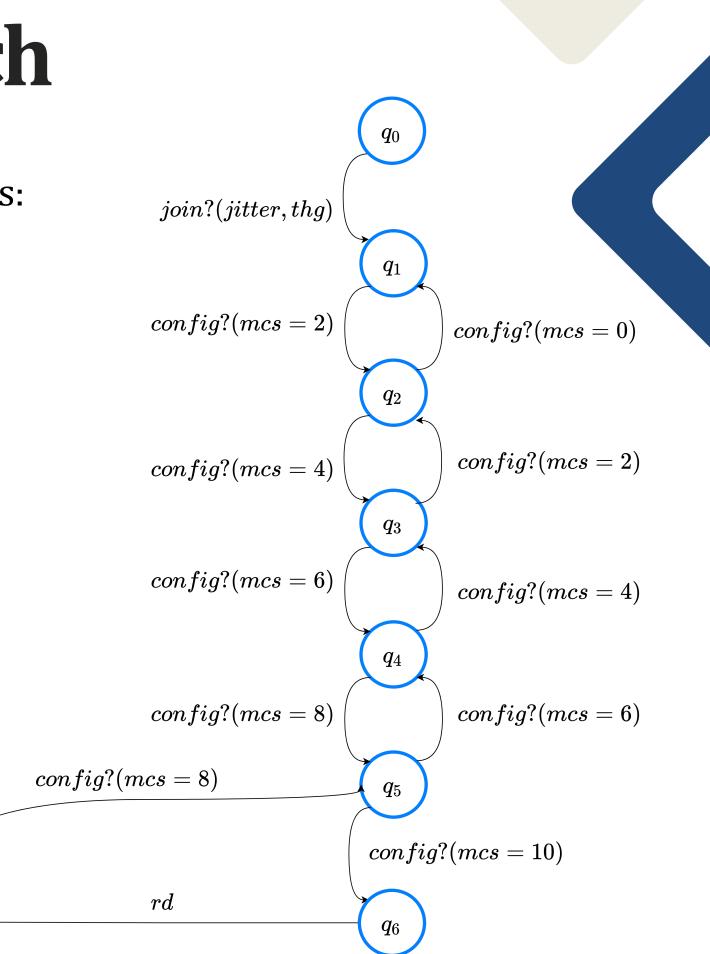
Close-loop approach

- Monitoring and learning from set of traces
- Automaton construction (abstract states)
 - Configuration
 - Intended traffic
 - Observed traffic
- Prediction and decision
 - Deviation detection
 - Next configuration
- Re-configuration
 - Apply the new values of the parameters



Advantages of automata learning compared to ML techniques:

- Behavioural model instead of a black box model
 → decisions can be explained
- Analysis of the automata:
 - Equivalence checking
 - Model composition and refinement



The Learn algorithm composes the automaton resulting from learning a finite set of *k* traces

Each trace $\pi = s_0 \cdot s_1 \cdots \cdot s_{n-1} \in \mathcal{T}$ is a sequence of observed states s_i

Each observed state is a tuple $\langle ts, conf_intd, obsd \rangle$

Observed states are produced:

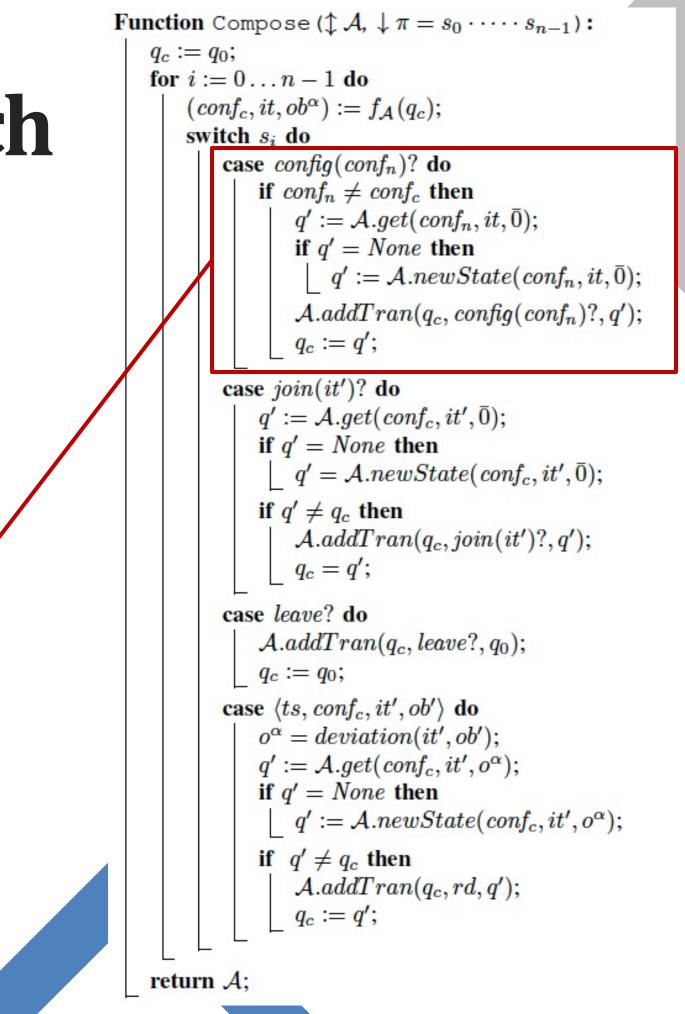
- periodically during network execution *rd*
- when events occurs:
 - config(conf)? \rightarrow change of configuration requested
 - *join(intd*)? \rightarrow new TSN session with *intd* KPIs
 - *leave* ? \rightarrow a existing TSN session is closed

Algorithm Learn ($\downarrow \mathcal{T} = \{\pi^1, \cdots, \pi^k\}, \uparrow \mathcal{A}_k$): $\mathcal{A}_0 := \langle \{q_0\}, q_0, \emptyset, \{q_0 \rightarrow (conf_d, \bar{\iota}, \bar{0})\} \rangle;$ for $i := 1 \dots k$ do $\lfloor \mathcal{A}_i := Compose(\mathcal{A}_{i-1}, \pi^i);$ return $\mathcal{A}_k;$

For each state of the trace, the function Compose considers 4 different cases:

1. The observed state is produced by a change in the network configuration

case
$$config(conf_n)$$
? do
if $conf_n \neq conf_c$ then
 $q' := \mathcal{A}.get(conf_n, it, \bar{0});$
if $q' = None$ then
 $\lfloor q' := \mathcal{A}.newState(conf_n, it, \bar{0});$
 $\mathcal{A}.addTran(q_c, config(conf_n)?, q');$
 $q_c := q';$

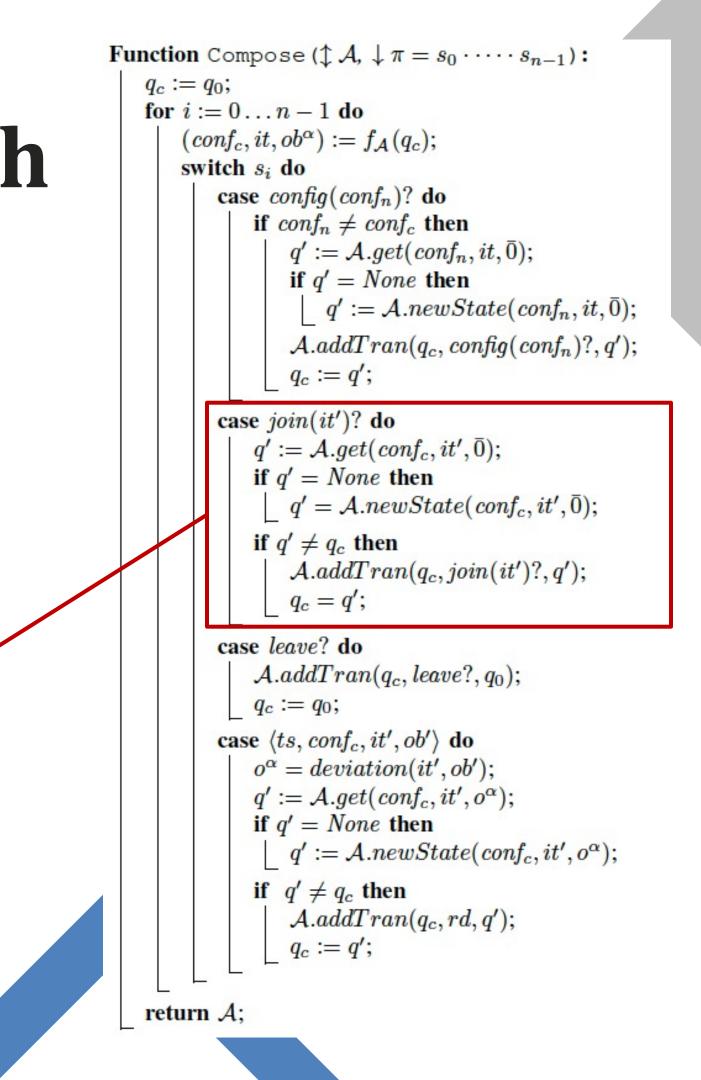


For each state of the trace, the function Compose considers 4 different cases:

1. The observed state is produced by a change in the network configuration

2. The observed state is produced by a new session

case
$$join(it')$$
? do
 $q' := \mathcal{A}.get(conf_c, it', \bar{0});$
if $q' = None$ then
 $\lfloor q' = \mathcal{A}.newState(conf_c, it', \bar{0});$
if $q' \neq q_c$ then
 $\lfloor \mathcal{A}.addTran(q_c, join(it')?, q');$
 $q_c = q';$



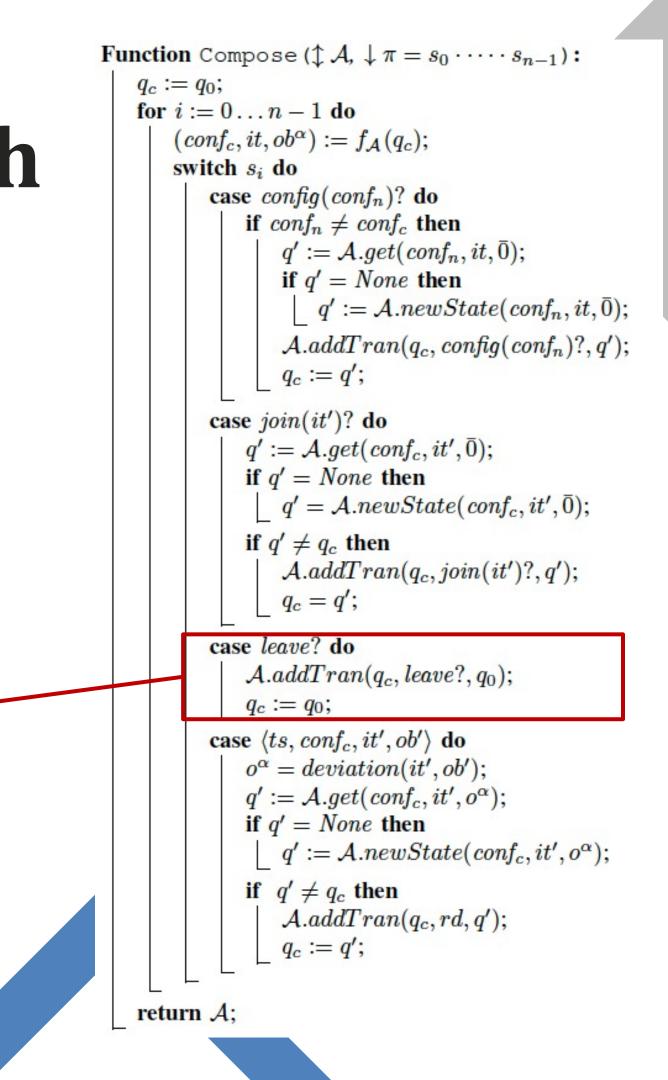
For each state of the trace, the function Compose considers 4 different cases:

1. The observed state is produced by a change in the network configuration

2. The observed state is produced by a new session

3. The observed state is produced by the end of a session

case leave? do $A.addTran(q_c, leave?, q_0); \leftarrow$ $q_c := q_0;$

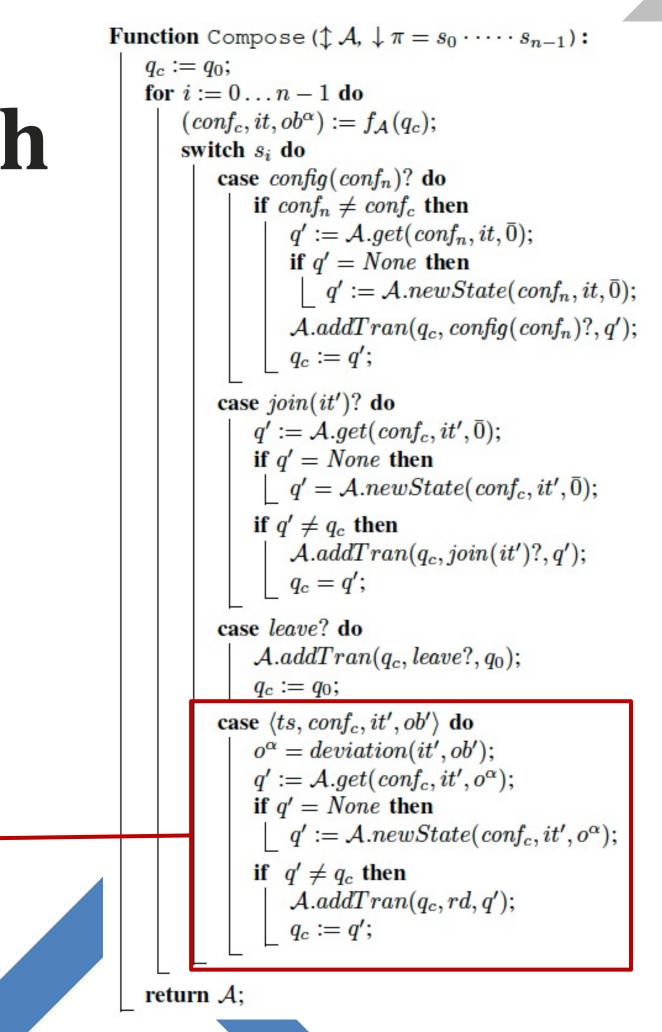


For each state of the trace, the function Compose considers 4 different cases:

1. The observed state is produced by a change in the network configuration

2. The observed state is produced by a new session

- **3**. The observed state is produced by the end of a session
- 4. The observed state is produced by time pass

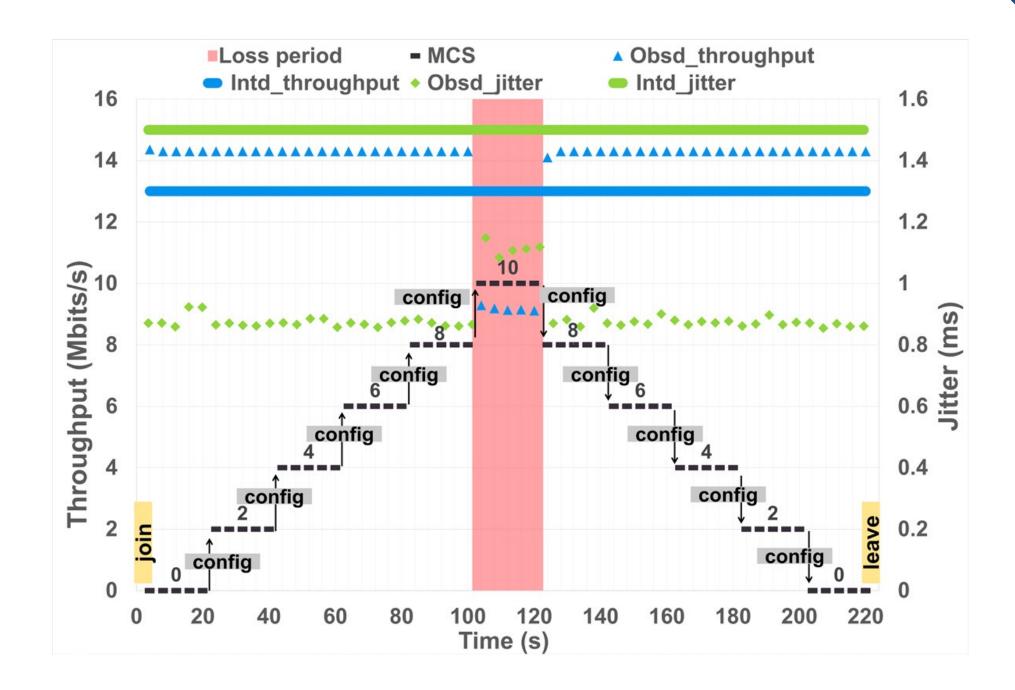


Construction of the learned automaton

Sample trace:

- At time **o** sec. a new session starts (join) \rightarrow Request max jitter and min throughput •
- At time **220** sec. the session ends (leave) \bullet
- Each **20** sec. there is a configuration change \bullet
 - MCS in [0,10]
- Each 4 sec. a new state is observed

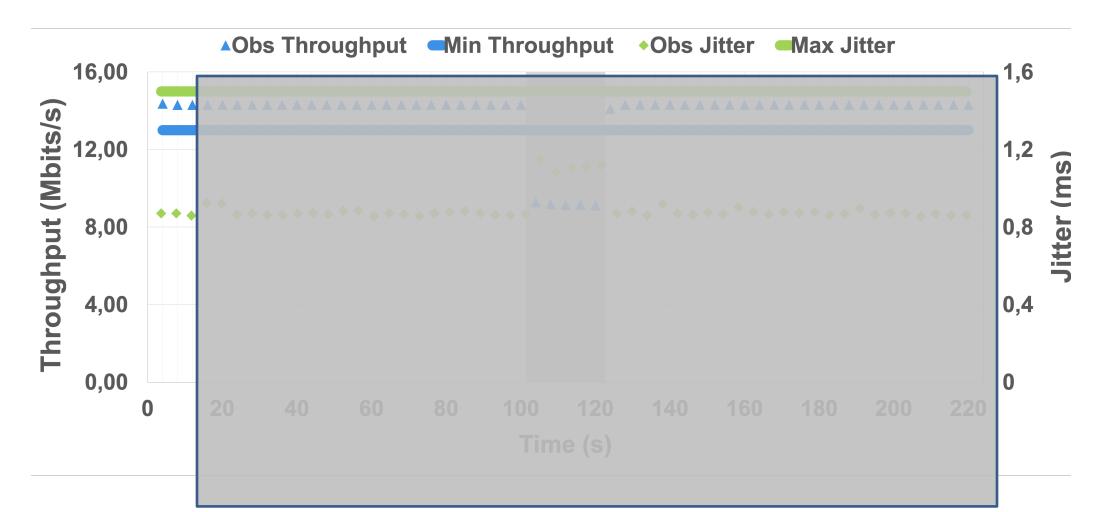
Given this sequence of events, how the Learn Algorithm works ?

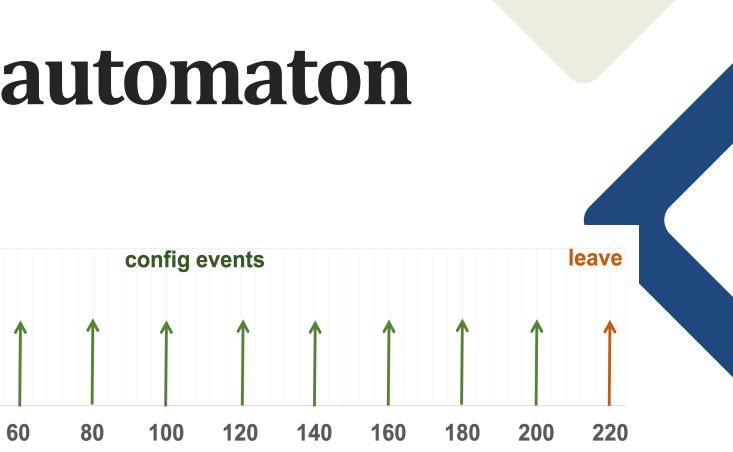


Construction of the learned automaton

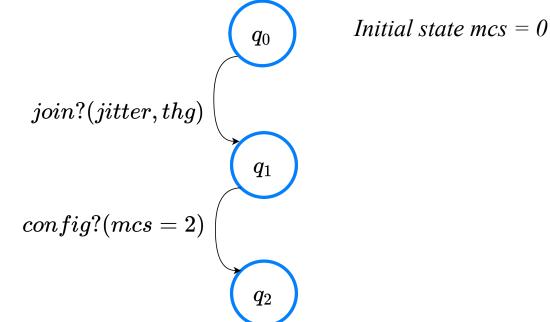
	q_0	Initial state $mcs = 0$
join?(jitter,thg)		
	q_1	

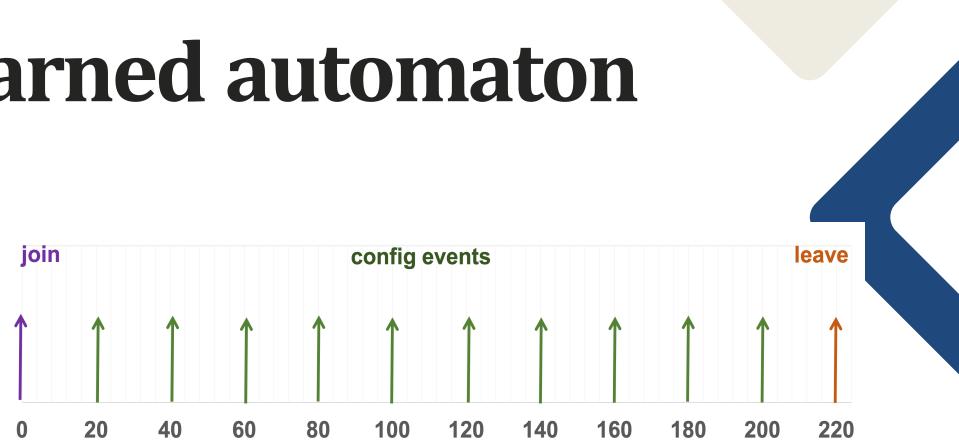
join 1 1 4 0 20 40 6

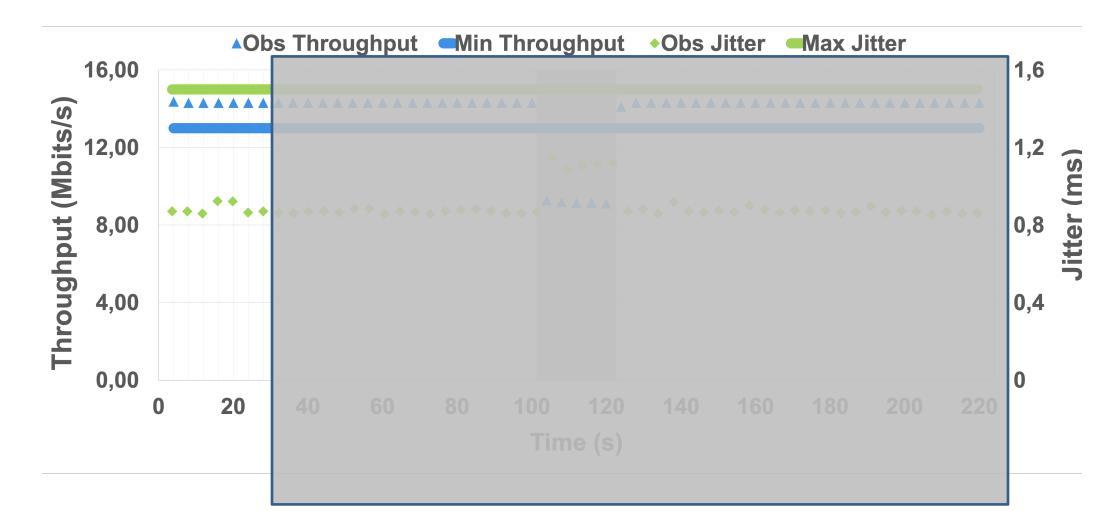


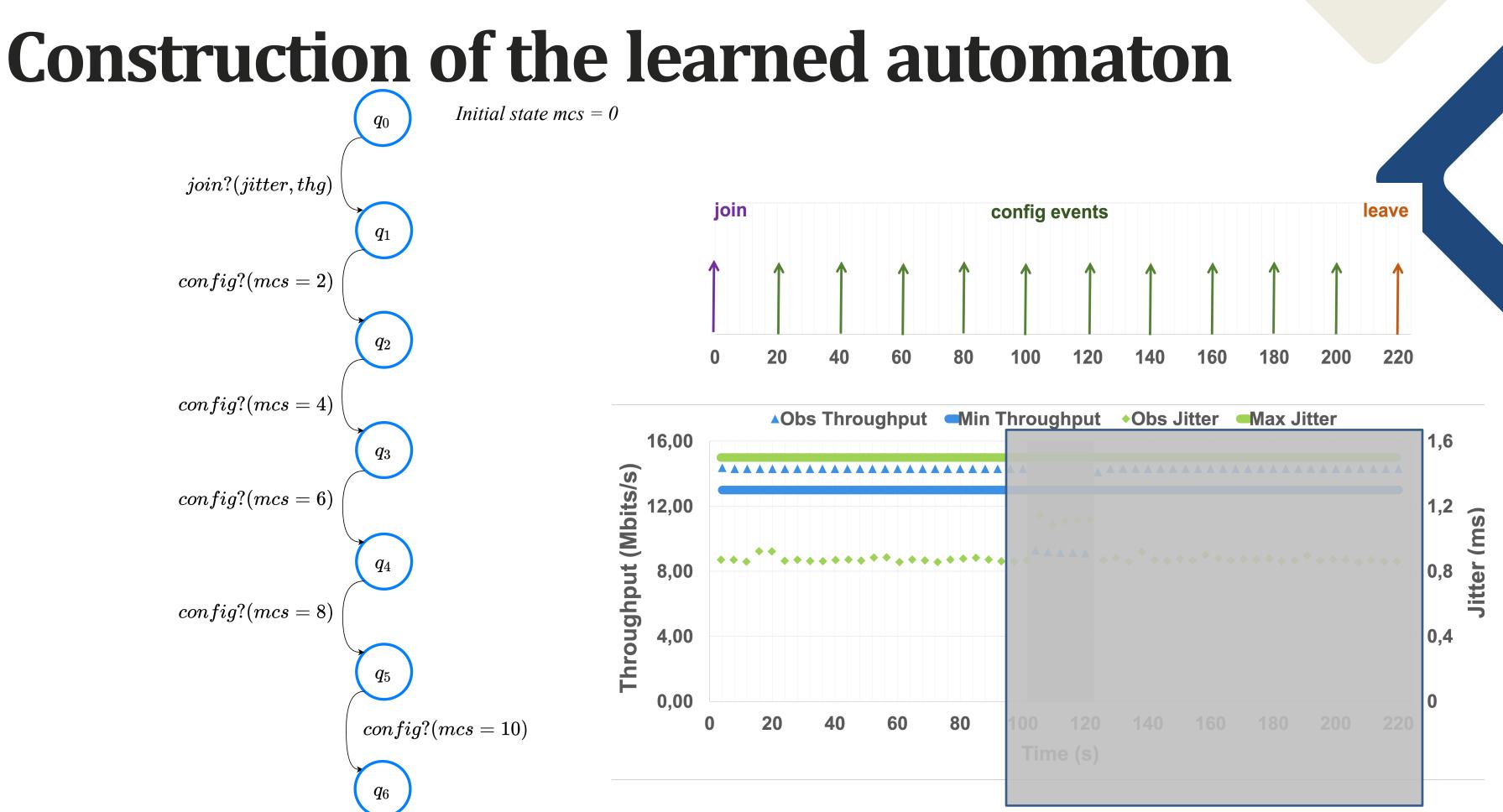


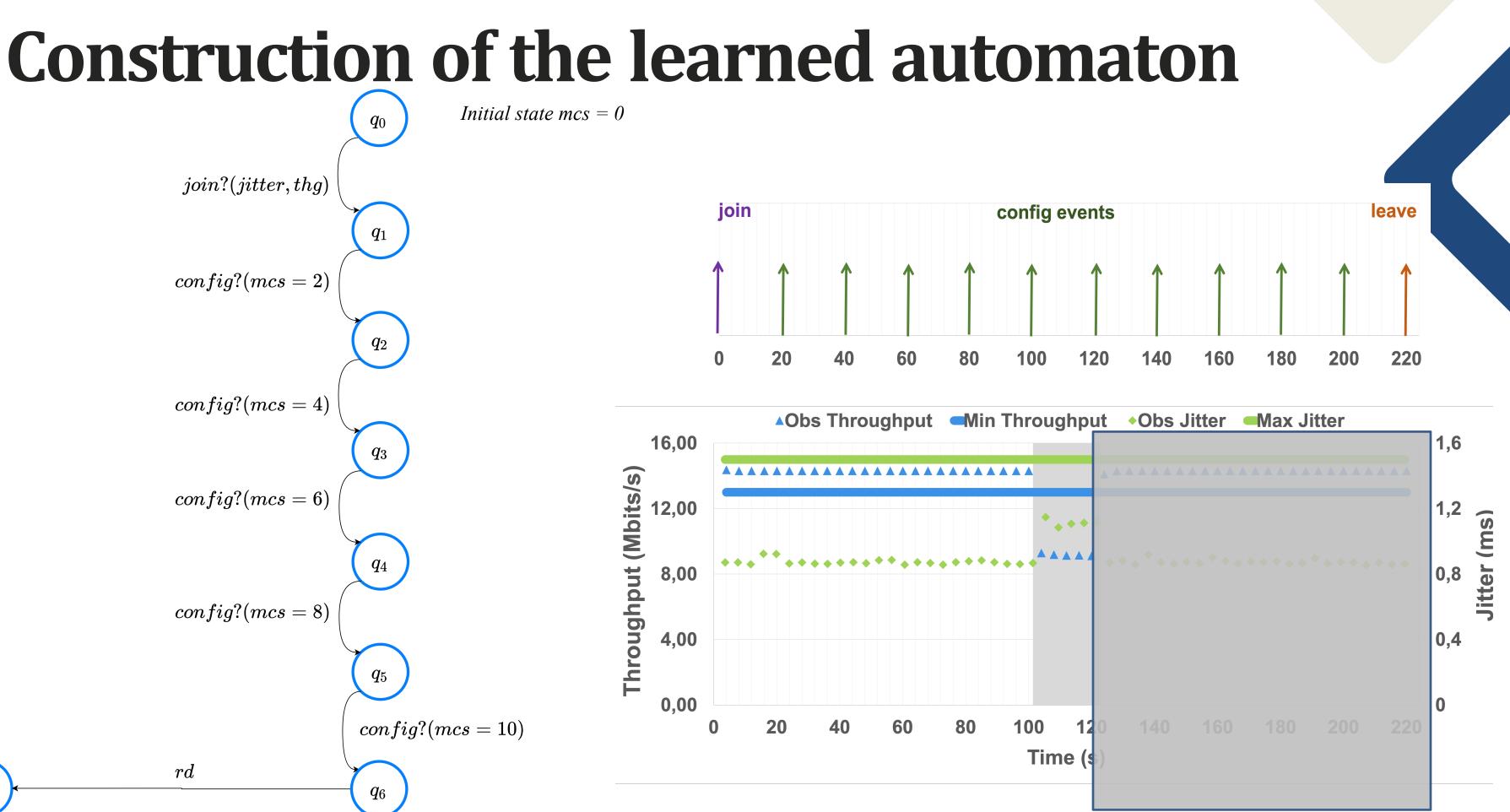
Construction of the learned automaton



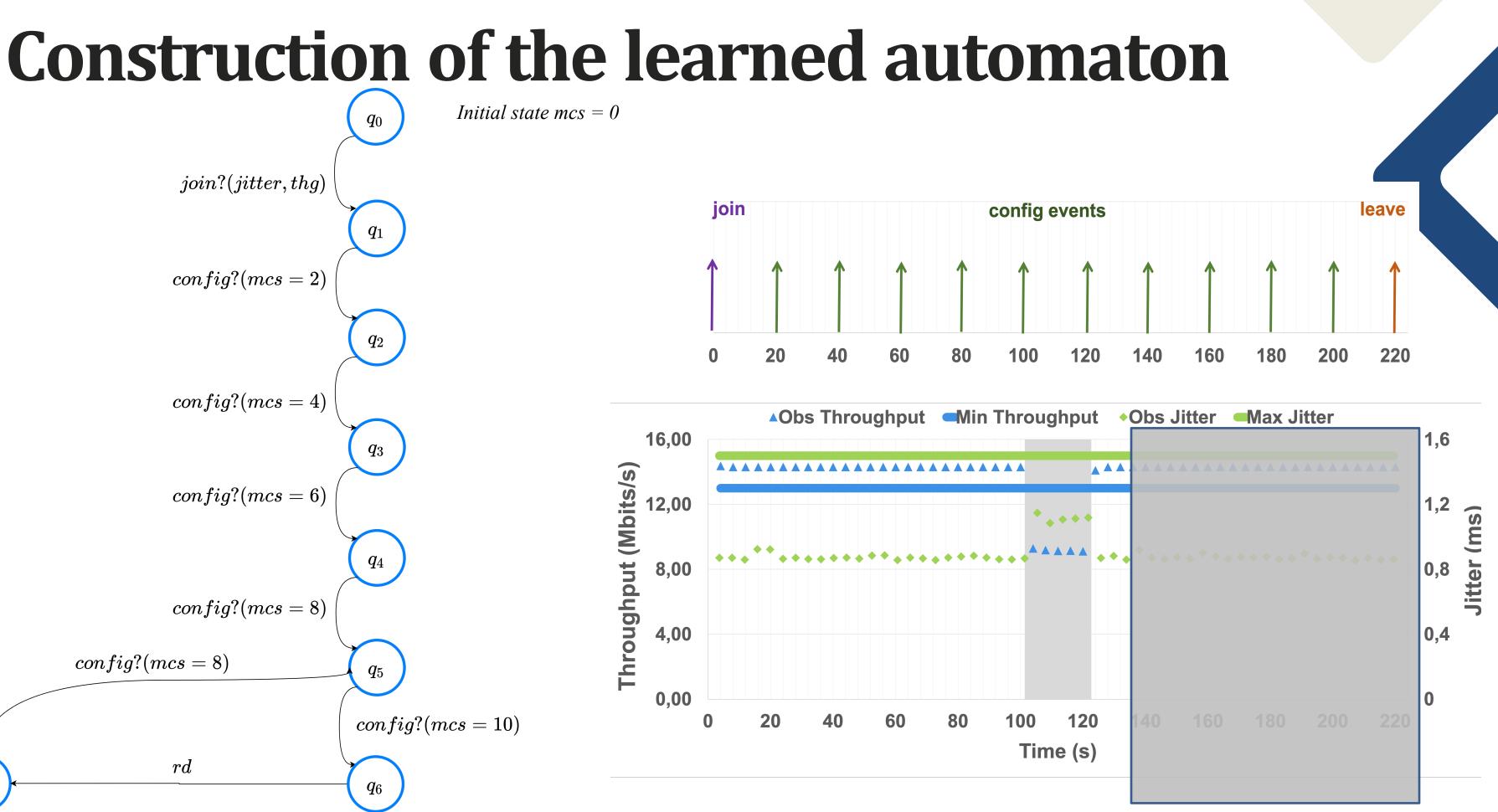




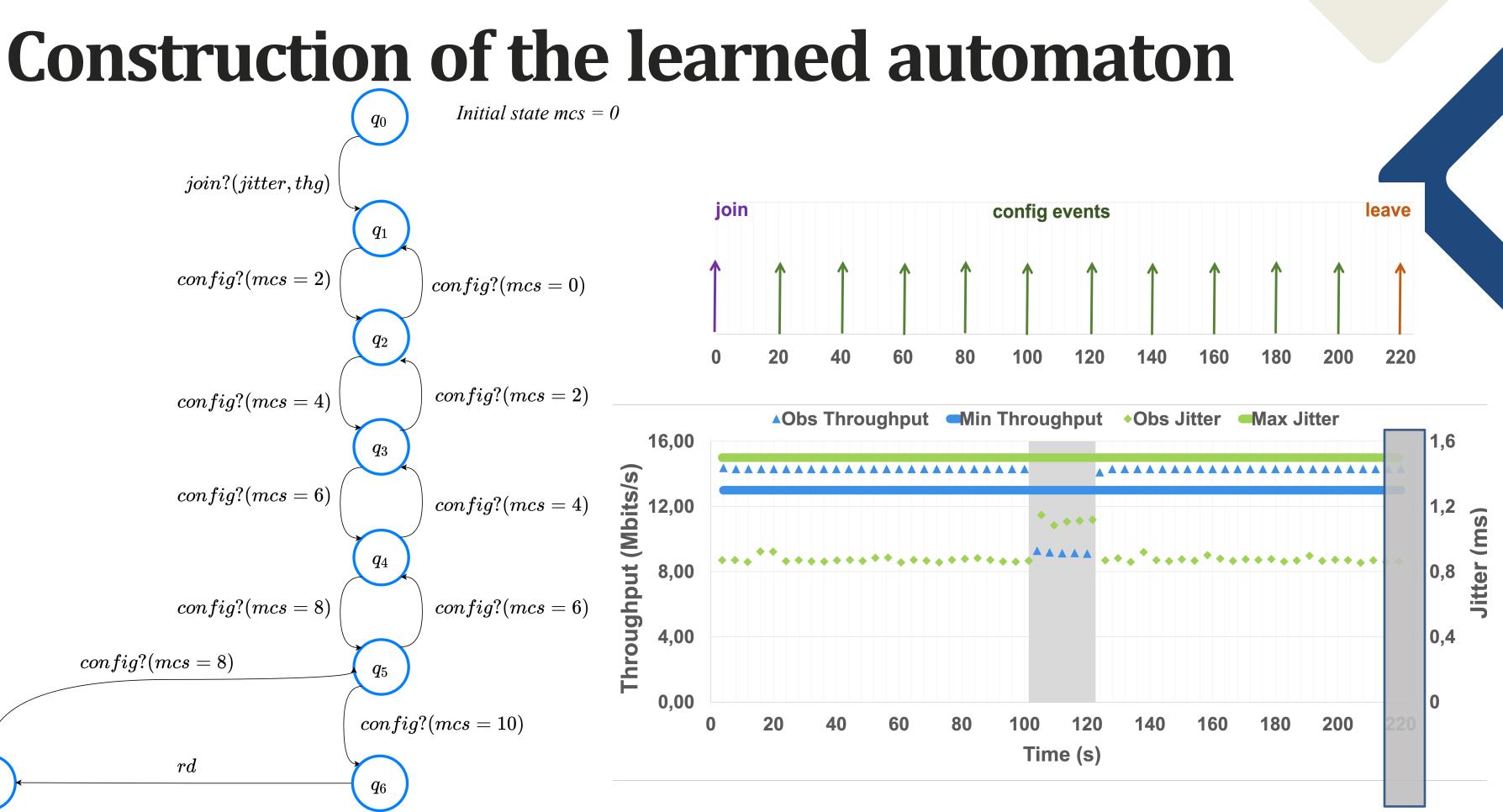




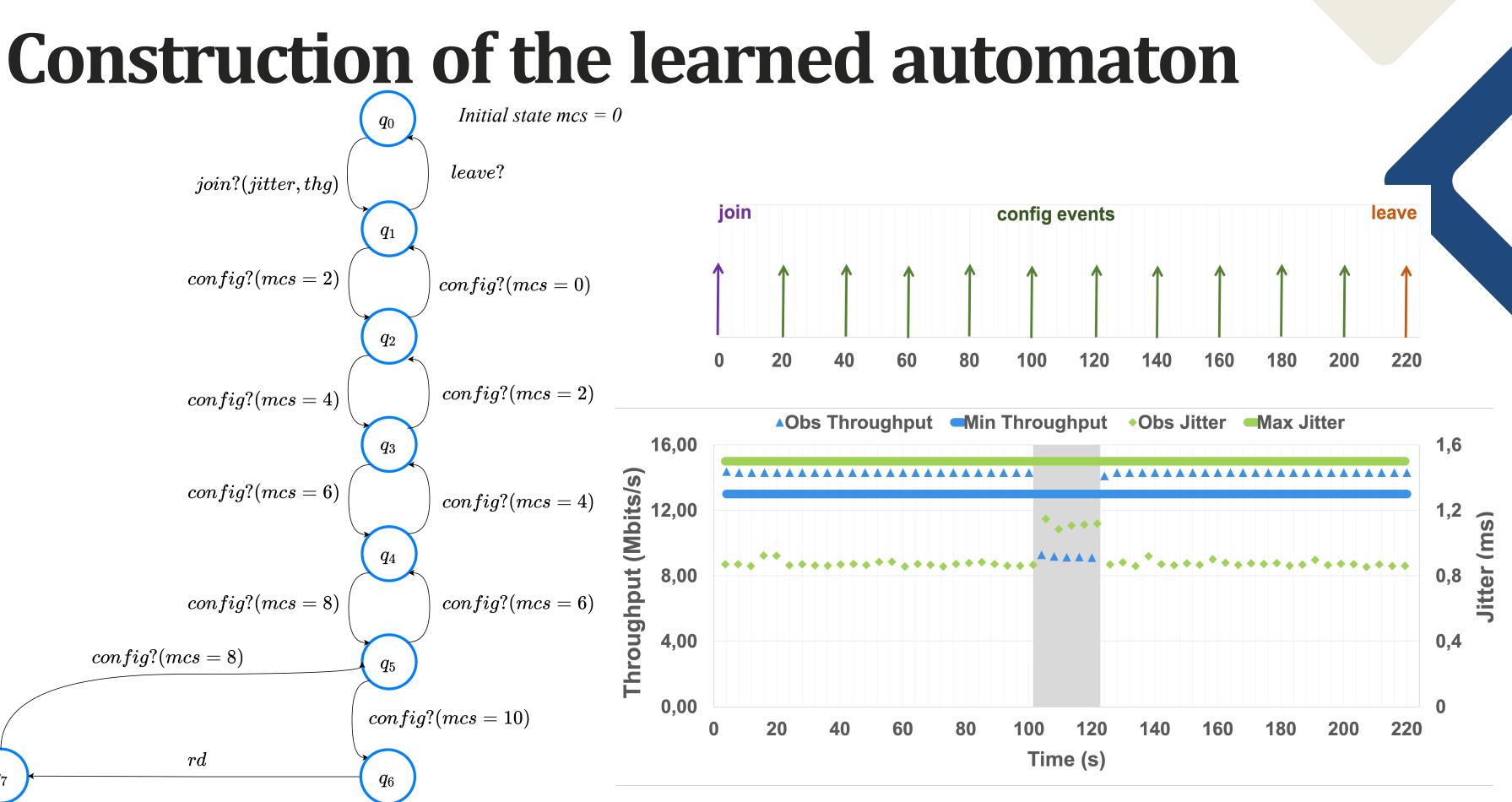
 q_7



 q_7

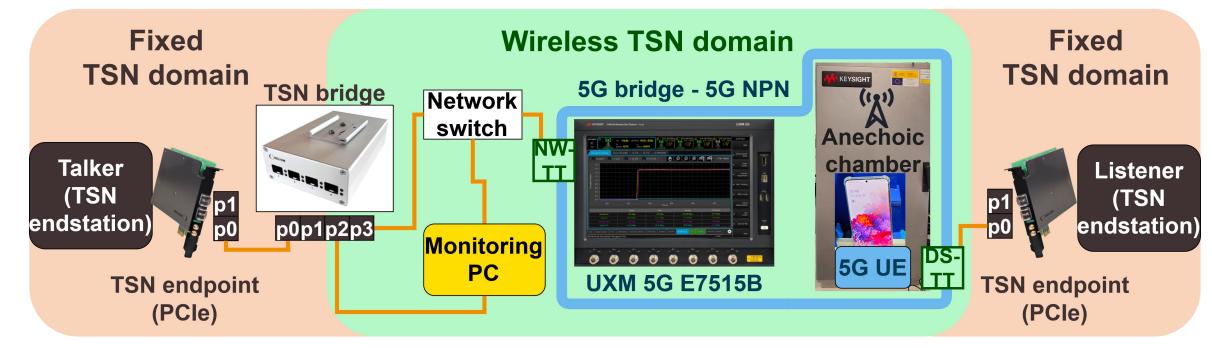


 q_7



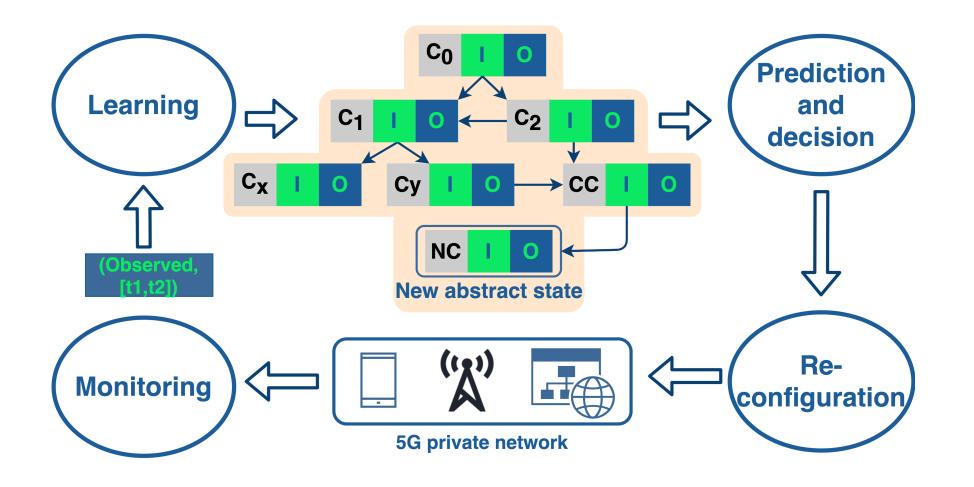
Experiments

- Learning algorithm implemented in Scala and Monitoring module with C
- **Experiments**:
 - Several hours over a realistic network
 - Considering only 2 endpoints •
 - KPIs considered: throughput and jitter •
 - Configuration parameters considered: MCS, PRB and Transmission Power
- **Results**: \bullet
 - Network traffic can be processed by the learning module to produce an \bullet automaton on real-time



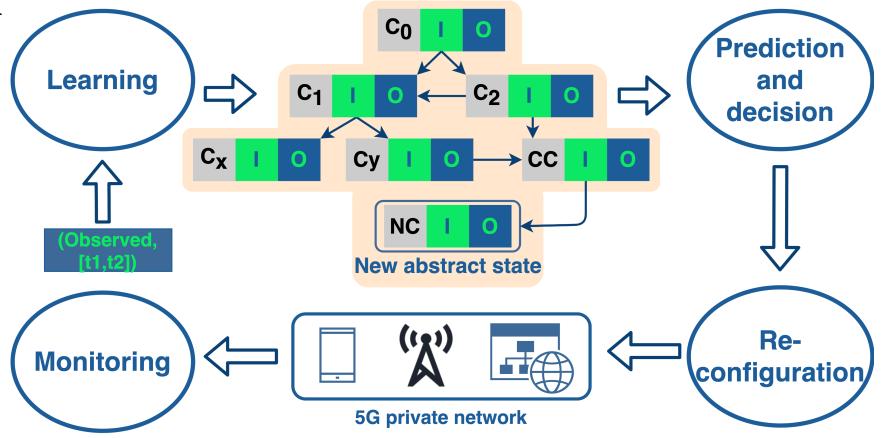
Conclusions & Future Work

- The implementation in Scala of the algorithm can process the network ulletcaptures in real-time
- Learning automaton generates a model bounded mainly by the number of • the network configurations



Conclusions & Future Work

- Extend the testbed: \bullet
 - Obtain traces with multiple TSN endpoints •
 - Define new synchronization mechanisms between the 5G and the TSN network domains
- Extend the *Learn* algorithm: •
 - Any number of configuration parameters and KPIs lacksquare
 - Produce one/several automaton that represents complex scenarios
- Support real-time prediction and re-configuration features based on the \bullet learned automaton



Thank you!

Any questions?

Francisco Luque-Schempp schempp@uma.es

