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ABSTRACT Driven by the emerging trend for transparent, open and programmable communications,
Open Radio Access Network (O-RAN) constitutes the dominant architectural approach for deploying
the future wireless networks. Towards standardizing and specifying the building blocks and principles
of O-RAN, a coordinated global effort has been observed, mainly comprised of the O-RAN Alliance,
the operators and several research activities. This paper presents the architectural aspects and the current
status of O-RAN deployments, integrating both existing and ongoing activities from the O-RAN enablers.
Furthermore, since the Artificial Intelligence and Machine Learning (AI/ML) act as key pillars for realizing
0O-RANSs, a comprehensive view on the AI/ML functionality is provided as well. Additionally, a Network
Telemetry (NT) architecture is also proposed to ensure end-to-end data collection and real-time analytics.
To concretely illustrate the O-RAN supporting mechanisms for hosting AI/ML, we implemented two realistic
ML algorithms: (i) a Supervised Learning (SL) based algorithm for cell traffic prediction using the training
data of an open dataset and (ii) a Deep Reinforcement Learning (DRL) based algorithm for energy-efficiency
maximization using a 5G-compliant simulator to obtain RAN measurements. We schematically demonstrate
the AI/ML workflow for both ML-assisted algorithms through the usage of xApps running on the Radio
Intelligent Controller (RIC), as well as we outline the role of the O-RAN components involved in the AI/ML
loop. Combining the high-level architectural descriptions with a detailed presentation of ML-empowered
resource allocation schemes, the paper discusses and summarizes the O-RAN disaggregation principles and
the role of AI/ML embedded in future O-RAN deployments.

INDEX TERMS 5G, B5G, O-RAN, AI/ML, radio intelligent controller, resource allocation, supervised
learning, reinforcement learning.

I. INTRODUCTION

The next-generation wireless networks are envisioned to act
as the cornerstone technology towards initiating the fourth
industrial revolution [1]. In this context, synergetic actions
across multiple operators, organizations and working groups
are continuously taken with the goal of establishing the fifth-
generation (5G) and beyond (B5G) cellular networks [2].
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To drive this evolution, three key objectives have been set,
each one defining a novel type of 5G/B5G service [3]:
(i) enhanced mobile broadband (eMBB), (ii) ultra-reliable
and low-latency communications (uURLLC) and (iii) mas-
sive machine type communications (mMTC). To effectively
support and handle these services, a significant reshape of
the existing 5G architectures is required, mainly targeting
to offer flexibility, configurability and intelligence. To that
end, Artificial Intelligence and Machine Learning (AI/ML)
principles must be embedded in the modern 5G/B5G
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architectures, ensuring dynamic network configuration, ser-
vice heterogeneity and multi-connectivity across multi-
vendor environments [4].

Open radio access network (O-RAN) Alliance has already
started to participate in the recent 5G architectures, pri-
marily embracing the concepts of transparency, openness,
programmability and intelligence [5]. Key pillars in the
deployment of O-RAN building blocks offer the opportu-
nity to the mobile operators to independently define and
design open hardware, supporting both centralized and dis-
tributed cognitive radio control across all the radio access net-
work (RAN) components [6]. Towards achieving these goals,
a concerted global effort and working groups (e.g. C-RAN
alliance, xRAN forum, ITU-T Focus Group on Autonomous
Networks, and the recently announced group RAN Intelli-
gence & Automation-RIA) have been formed to collaborate
in the definition of requirements, use cases and architectural
aspects that an O-RAN setup has to be compliant with [7], [8].

In addition to RAN programmability and network open-
ness, one of the main objectives of O-RAN is to transform the
current architectures into more intelligent and autonomous
versions [9]. The O-RAN solutions are provisioned to host
advanced data science tools, leveraging AI/ML functional-
ities to significantly automate the control-flow process and
enhance the RAN performance. Introducing such an intel-
ligence level requires a well-defined architectural design in
order to support algorithms that continuously gather and
exploit the network data in an efficient manner [10]. RAN
functionalities and building blocks must be re-defined beyond
the traditional manually-programmed methods in order to
host AI/ML capabilities and handle the ever-increasing com-
plexity of the envisioned networks. The flexible system dis-
aggregation, along with open interfaces, have been reported
as the key concept according to which operators can isolate
RAN components from different vendors, while providing
multi-vendor interoperability [6], [10]. These disaggregated
and open RAN solutions are the first step before AI/ML
algorithms can take over the management of advanced RAN
functions, especially with regards to Al algorithms placement
and the introduction of agent-based distributed techniques in
solving complex problems requiring high security and trust.

According to O-RAN Alliance specifications describing
the AI/ML workflow and requirements [11], two main enti-
ties, namely the non-real-time RAN intelligent controller
(non-RT RIC) and the near-real-time RAN intelligent con-
troller (near-RT RIC), will play a critical role in the AI/ML
assistance and control loops, determining the optimization
rationale of the O-RAN deployments according to the deci-
sion time-scale each of them handles (e.g., the near-RT RIC
operates in order of ms, while the non-RT RIC decides
above 500 ms) [12]. Besides the controllers’ functionality,
the O-RAN Alliance also specifies open interfaces and dis-
aggregates the near-RT functions from central unit (CU) and
distributed unit (DU), partially relaxing the hardware require-
ments at the cell site. This is coupled with the introduction of
applications (xApps/rApps), which can potentially be hosted
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either on the near-RT RIC for near real-time control or on the
non-RT RIC, depending on the time sensitivity of the control
process. AI/ML algorithms are considered to run as on-top of
the near-RT RIC (xApps, for resource optimization) or the
non-RT RICs applications (rApps for policies and orches-
tration) and can be re-configured by the mobile operators
depending on their specific needs [13].

A. TOWARD NON-PUBLIC NETWORKS

Probably the most critical target of the O-RAN is the realiza-
tion of intent-based management. This idea mainly implies
an intelligent configuration performed at the RAN target-
ing at setting technical parameters (e.g. handover thresholds
between cells), scheduling and prioritizing across users and
services in an intent-driven manner [6]. The key enabling
objective coupled with the realization of intent-based man-
agement in the frame of O-RAN can be identified as: given
that in O-RAN multiple vendors can share, deploy and pro-
gram the same open network environment (e.g. all vendors
have open access to a common ML catalog that contains
pretrained models), a particular vendor can exploit an AI/ML
model that has been deployed by another vendor in the
past. Network administrators can define a request or business
objective (i.e. the ‘intent’) and the network’s software can
reply on how to achieve that goal, based on existing ML
catalogues. Consequently, intent-based management is able
to replace the manual routine processes and enable multi-
vendor sharing or model exchange. As part of the Service and
Management Orchestration (SMO) module, the non-RT RIC
will have critical engagement in this concept, at least during
the initial phase of the O-RAN deployment.

The idea of O-RAN triggered industries and business
enterprises to establish the concept of 5G Private Networks
or Non-Public Networks (NPNs) [14]. Contrary to public
(and usually vendor lock-in) networks, a SG NPN allows
for enterprise-specific (capital and operational) cost reduc-
tion and flexibility (each enterprise deploys virtual network
functions (VNFs) depending on its particular requirements),
since the network deployment is open across multiple ven-
dors and costs are distributed among operators [15]. This
shared-among-vendors architectural approach introduces ser-
vice heterogeneity, while reinforces also the need for Net-
work Slicing capabilities in order to support different
(parallel) network functionalities under the same network
infrastructure [16]. For example, depending on the type of
work that is conducted in one site/location of the enterprise,
the system might be able to support a slice addressing mMTC
requirements, while in another enterprise site, the business
needs might require spectrum sharing among public and pri-
vate 5G spectrum in several bands to cover eMBB services.

B. OVERVIEW OF O-RAN EVOLUTION

O-RAN evolution relies on the combined principles of
Cloud-RANs (C-RANs) and Virtualized-RANs (V-RANSs),
extending their functionalities to incorporate openness and
interoperability [17]. Traditional deployment of cellular
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networks involves an inflexible, monolithic and ‘black-box’
infrastructure, incapable of decoupling the hardware and
software of underlying network infrastructure. This vendor
lock-in approach is now unable to handle the design require-
ments of 5G/B5G, with the latter being characterized by vast
number of available resources, network parameters, real-time
traffic conditions and optimal network configuration [2].

C-RANs were the first solution to eliminate these con-
straints, partially exploiting the computational abilities of
the Cloud [18]. Specifically, C-RAN architecture consists
of three building blocks, namely the baseband units (BBUs,
located in the cloud), the remote radio heads (RRHs, acting
as remote antenna elements) and the fronthaul links to inter-
connect the BBUs with RRHs. In C-RAN, the Base Stations
(BSs) are decoupled into two parts: distributed RRHs and
BBUs clustered into a pool. The pool is centrally-placed at
the Cloud, allowing resource sharing, real-time and flexible
scheduling in a centralized manner, while enabling the radio
resource sharing amongst different BBUs and meeting the
dynamic user demands.

Following the technologies of the Software-Defined Net-
work (SDN) and Network Function Virtualization (NFV),
V-RANSs extended the C-RAN concept [19]. By decoupling
hardware and software, V-RAN facilitates the creation of
logically-isolated instances over the physical infrastructure,
leveraging the wireless and BBU resources to be shared
among RRHs, based on the time-varying traffic conditions.
This inevitably imposed new cloud requirements for the vir-
tualization, orchestration and network resource scaling. The
dominant technologies to meet these requirements are the
hypervisor-based (a VM runs a guest operating system, e.g.
OpenStack) and the container-based (executes a specific soft-
ware app in isolated system environments called containers.
e.g. Docker) virtualization schemes.

A. Monolithic RAN
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FIGURE 1. Evolution of RAN architectures. (A) Closed system monolithic
approaches offer little or no flexibility (vendor lock-in). (B) Cloud or
Centralized RAN where baseband unit is located either in a data center or
a far-edge location and remote radio heads are connected through a
high-bandwidth front-haul. (C) O-RAN disaggregation to enable
multi-access edge computing and distributed network monitoring.

O-RAN constitutes the logical derivative of the C-RAN
and V-RAN, primarily adding the concept of open-and-
intelligent network configuration. By introducing open
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interfaces and open-source software, O-RAN offers the
opportunity to the small vendors to gradually add novel
services according to their own requirements. It also pro-
motes a fast, competitive and efficient network deployment,
while preserving the backward compatibility with legacy sys-
tems [20]. This is achieved by an extreme level of network
disaggregation to allow handling among multi-vendors, but,
unfavorably, increasing the orchestration and radio resource
management complexity. To account for this software split-
ting and densification, AI/ML is inevitably coupled with
O-RAN design, in order to assist and automate the network
management and provide self-organizing capabilities [6].

C. KEY FEATURES OF O-RAN

Apart from the C-RAN/V-RAN capabilities offered by
O-RAN, there are also well-known or novel technologies that
have to be included in a complete 5G/B5G system architec-
ture, such as Self-Organizing Network (SON), Multi-access
Edge Computing (MEC), Network Slicing (NS), Neutral
Hosting (NH) and Network Telemetry (NT) [20]. Although
most of those features show interdependencies, being partly
complementary and synergetic, some functions developed
within one can be beneficially reused by others. However,
their direct integration requires the identification of func-
tional block redundancy, because the latter directly affects
the overall system delay and performance. Notwithstanding
the foregoing, several key enabling concepts are identified
in the O-RAN based 5G/B5G architectures, summarized as
follows:

1) SELF-ORGANIZING NETWORK

SON principles include the automation, intelligence and
self-configuration presented by the O-RAN. Newly-deployed
nodes and alarm-triggered reconfiguration of existing nodes
have to be supported by SONs, whereas self-optimization
functions are essential parts of SON modules. Those include
coverage, capacity, handover, QoS satisfaction, energy
efficiency and interference control. There is no specific doc-
umentation by 3GPPP for SON architecture, but its func-
tionality is primarily supported by the O-RAN intelligent
controllers deployed as xApps or rApps.

2) MULTI-ACCESS EDGE COMPUTING

Nowadays, a considerable amount of data is generated at the
network edge (i.e., manufacturing environments) rather than
the network core. Therefore, over the last years, the neces-
sity to process data on the edge has emerged, as a valuable
tool to reduce network latency, minimize backhaul network
congestion and ensure high service availability. To this end,
the concept of MEC enables cloud-computing capabilities at
the edge of the network, thus minimizing network conges-
tion and allowing flexible deployment of applications and
services [21].

3) NETWORK SLING
NS refers to the mechanisms needed to parallelize the
network infrastructure without increasing the costs [22].
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Based on service level agreements (SLAs), it is possible to
assign different responsibilities in diverse logical networks
(slices), specialized to cover particular services. For example,
the three types of 5G services (mMTC, eMBB and URLLC)
may be delivered by the same physical infrastructure divided
into three isolated, end-to-end slices tailored to fulfil the
service-specific requirements.

4) NEUTRAL HOSTING

NH enables a cost-efficient wireless infrastructure shared
among multiple operators to increase network densifica-
tion [14]. It is used to provide services to end-users with
subscriptions to several different hosted operators. With the
introduction of open APIs, open interfaces, open-source soft-
ware and SDN/NFV, O-RAN can leverage the cost efficiency
of deploying 5G services by co-operating with a neutral host
service provider. This would allow differentiated services
blended with services offered by operators to maintain conti-
nuity within the coverage area of the neutral host.

5) NETWORK TELEMETRY

Network Telemetry (NT) refers to real-time data collection,
in which devices or other network entities push data to a
centralized location [23]. Telemetry metrics are generated
from enterprise resources, such as switches, routers, wireless
infrastructure and IoT systems, and are used by business
and technology applications to monitor trends and help IT
respond to threats or react to changing network conditions.
A major trend nowadays is the provision of NT to AI/ML
algorithms, for holistic network monitoring and reconfig-
uration when necessary. The finer granularity and higher
frequency of data available through telemetry enables better
performance monitoring and therefore, better troubleshoot-
ing. It helps a more service-efficient bandwidth utilization,
link utilization, risk assessment and control, remote monitor-
ing and scalability.

D. CONTRIBUTIONS

This paper summarizes the design principles underlying the
O-RAN potential to encapsulate the concept of a cognitive
management-oriented SON, especially for purposes of Radio
Resource Management (RRM). Firstly, we present the well-
documented parts of the O-RAN architecture with respect
to AI/ML support in a generic manner, outlining possible
deep learning (DL) and deep reinforcement learning (DRL)
algorithms implemented within O-RAN deployments.
Secondly, we illustrate how the intelligence loop, engaging
the cognitive controller, can be unfolded within the O-RAN
architecture, highlighting the critical components involved in
the design, training, inference and evaluation phases of the
AI/ML models. We also concretely describe the AI/ML work-
flow, responsible for an end-to-end delivery of both super-
vised and reinforcement learning-based models in a unique
manner. As practical use case implementation, we show how
the O-RAN can (i) support predictive capabilities (using a
cell load prediction paradigm from an open dataset [23]) and
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(i1) ensure enhanced energy-efficient power transmissions
(using multiple energy efficiency-targeted agents). To gen-
erate realistic network measurements, we also developed
a general-purpose 5G simulator (publicly available soon),
following 3GPP-compliant channel models [24] and support-
ing user mobility patterns. Finally, to support data collec-
tion across the entire 5G network components, a high-level
description of a network-wide telemetry architecture is also
provided, highlighting how the network analytics spanning
from the radio access part to the core network functions can
be extracted.

Combining the high-level architectural descriptions with a
detailed presentation of ML-empowered resource allocation
schemes, the paper discusses and summarizes the O-RAN
disaggregation principles and the role of AI/ML embedded
in future O-RAN deployments.

Il. O-RAN ARCHITECTURE AND INTELLIGENCE

In this section, the O-RAN architecture along with the
enabled AI/ML capabilities is described. As previously men-
tioned, the support of open interfaces following the O-RAN
initiative is expected to allow flexible and cost-efficient 5G
deployments in private and enterprise networks. This solution
will not only facilitate the deployment of a 5G RAN using
components from multiple vendors, but it will also simplify
network management leading to reduced operational costs.
This will become possible by embedding intelligence using
emerging deep learning techniques at both component and
network level of the RAN architecture [5]. In combination
with the standardized southbound interfaces, Al-optimized
closed-loop automation is achievable and is expected to
enable a new era for network operations. Therefore, in the
following subsections, after the description of the O-RAN
architecture, the key-enabling technologies that support the
deployment of AI/ML frameworks in O-RAN are described
as well.

A. GENERAL O-RAN ARCHITECTURE

The general approach of the O-RAN architecture is depicted
in Fig. 2. Primarily, it can be decomposed into two layers,
namely the Service, Management and Orchestration (SMO)
module, as well as the radio access site. The latter consists
of all the radio access entities and functionalities, including
the near-RT RIC, the vertically-split control (CP) and user
(UP) planes of the central units (CU), the distributed units
(DU), as well as open interfaces interconnecting the O-RAN
nodes. The non-RT RIC is located in the SMO layer and
communicates with the near-RT RIC via the Al interface.
By placing the non-RT RIC in the SMO, a combined usage
of RAN metrics and contextual (usually external) data can
be realized, allowing for priority-aware or condition-specific
RAN optimization. In this context, open Al interface is
dedicated to provide intent-based policies, especially for the
O-RAN optimization, acting as the bridge for policy commu-
nication between the near-RT and non-RT RICs [12]. This
interface enables also vendor-agnostic policy guidance to the
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underlying RAN elements, making the management policies
to be acknowledged in the radio access side.

The O1 interface connects the SMO to the RAN-managed
elements. Through this interface, metrics associated with
the performance of the RAN nodes can be collected to
the SMO and, additionally, the SMO can control and even
apply configuration changes to the RAN (e.g. reallocation of
slice resources). The corresponding E2 interface establishes
communication among the lower RAN modules (CU, DU
and RU) and the near-RT RIC and is intended to serve
similar utilities to O1 for time-sensitive control of the RAN
components. Finally, the El interface connects the control
plane (CP) of the O-CU with the corresponding user plane
(UP), while the Al interface connecting the non-RT RIC
and near-RT RIC is employed for policy management and
coordination.

Service and Management Orchestration (SMO)
Layers of Intelligence/

Control loops Latency

Model Trainer

Non-Real Time RIC

(KAPPXADD -KApp) q
Coverage optimization N Near-Real Time RIC

Traffic prediction
\\,\\ p /_/

preprocessing, )
model trainig, Data collection

ine network orchestrationy Preprocessing
algorithm improvements

Non
Real-time

Near
Real-time

Rea-time assistance,
Spectrum management,
Resource block allocation,
Power control,
Beamforming

Real-time

FIGURE 2. General O-RAN architecture. A cross-layer intelligence scheme
can be supported, including the management examples mentioned in the
colored clouds (on the left side). A closed-loop top-down management is
feasible, with intelligence functions running on top of the O-RAN
controllers as rApps or xApps. A bottoms-up data collection and
performance monitoring is also achieved through 01 open interface.

B. Al/ML OVERVIEW

The ultimate goal of AI/ML algorithms is to provide alarms,
predictions or suggested actions on unknown network states
(e.g. traffic prediction, cell congestion alarms, power config-
uration towards throughput maximization). In other words,
an AI/ML model targets to find a mapping between inputs
(or features) and outputs (or dependent variables) in order to
guarantee a specific objective. Depending on the approach
followed to find this ‘mapping’, three broad AI/ML cat-
egories are identified, namely Supervised Learning (SL),
Unsupervised Learning (USL) and Reinforcement Learning
(RL) [25]. The first two AI/ML branches totally rely on
historically collected samples that relate the input with out-
puts. Outputs can be either numerical values (i.e. regression
problems [26]) or categorical values (i.e. classification prob-
lems [27]). SL uses the labels (i.e. the desired outputs) to
fit a mapping function between features and outputs on the
training dataset (i.e. the historical data). On the contrary, USL
does not use labels, thus it is appropriate to extract hidden
patterns in the training dataset (e.g. clustering, dimensionality
reduction) [28]. Following a different approach during
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training, RL suits for decision-making problems, since it
includes an agent that aims to maximize collective future
rewards through trial-and-error interactions with a well-
defined environment [29]. Fig. 3 summarizes the AI/ML
branches, along with the most frequent algorithms associated
with each category.

Deep neural networks (DNNs) have been incorporated in
every AI/ML branch, since they show impressive capabilities
in mapping both linear and non-linear (multi-feature and
multi-variate) functions [27]. DNNs can be used as SL or
USL regressors, classifiers, or even function approximators
in Deep RL (DRL). For example, DRL agents use DNNs to
approximate the ‘quality’ of being in a given state and per-
forming a specific action (the so-called Q-function), instead
of using memory-inefficient and computationally-intensive
Q-tables [30]. In SL, DNNs shows enhanced performance
in fitting complex relationships by adding multiple levels of
abstraction (hidden layers) and gradient descent operations,
thus allowing to decipher non-linear patterns in the data
and overcoming the, usually simplified, assumptions of other
classical AI/ML models, such as linear regression, logistic
regression and random forests [31].

Supervised ﬁ Regression @
| Learning 'Ll jassification 2

Unsupervised Clustering @
Learning Dimensionality|

Machine
Learning

Reduction
;
[Reinforcement| [1_Tabular RL [(5)
| Learning Deep RL @
(1)Regression 2 Classification Clusterin

-Simple Linear Regression
-Multiple Linear Regression
-Polynomial Regression
-Support Vector Regression
-Decision Tree Regression
-Random Forest Regression
-Deep Neural Network
-Recurrent Neural Network

-Logistic Regression
-K-Nearest Neighbohrs
-Support Vector Machine
-Kernel SVM

-Naive Bayes

-Decision Tree Classification

-K-Means Clustering
-Hierachical Clustering

4 )Dimensionality Reduction
-Principal Componet Analysis
-Linear Discriminant Analysis

-Random Forest Classification 5(6)Reinf tL 3
-Deep Neural Network \ einforcement Learning
-Recurrent Neural Network -Single-Agent RL

-Multi-agent RL

FIGURE 3. Machine learning broad categorization (upper panel) and
widely-used examples per Al/ML branch (lower panel).

In the frame of O-RAN architecture, AI/ML is provi-
sioned to play a critical role in several cross-layer topics. For
example, autonomous radio resource management (or RRM)
should operate at the Transmission Time Interval (TTI) time
scale, thus requiring an AI/ML model that is hosted at an
edge O-RAN component (e.g. O-DU). Such models could
be responsible for regulating O-RU parameters, including
the power levels and/or bandwidth allocation in resource
blocks, and could be trained following SL, USL or RL prin-
ciples. On the other hand, the relatively time-insensitive and
computationally-expensive operations, such as beamform-
ing parameter configuration, dynamic resource assignment
in networks slices, placement of virtual network functions,
could be hosted in higher layer (e.g. in Non-RT RIC/SMO).

C. Al/ML FUNCTIONALITIES IN O-RAN
In the vision of O-RAN architectures, three control loops
and AI/ML-dedicated nodes have been standardized to host
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automated and intelligent management functionalities [11].
SMO, Non-RT and Near-RT RIC, along with their inter-
connection interfaces, constitute the crucial O-RAN compo-
nents to host AI/ML functionality across network domains,
attending to support both offline/online training and infer-
ence. Offline training refers to the time-consuming pro-
cesses required for training a model. Online training refers
to real-time agents that learn by interacting with the envi-
ronment through trials-and-errors. The offline training sup-
port is essential in O-RANs because time-sensitive decisions
have to exploit already pre-trained models. In this respect,
this approach mainly relies on the following design princi-
ples: (i) an offline learning module is by default essential to
train SL, USL and RL algorithms based on historical data,
(ii) offline training refers to a pre-trained model that may
be inferred during the online operation of the network,
(iii) online training refers to the concept of real-time learners
(e.g. RL), as the model is trained through interaction with
the network and (iv) completely untrained models cannot be
directly deployed in the network without prior training and
testing.

In O-RAN, two critical building blocks will be responsible
for the execution of the ML workflow [12]: (i) the Near-
RT RIC is a logical function that enables near-real-time con-
trol and optimization of RAN elements and resources via
fine-grained data collection and actions over E2 interface,
as depicted in Fig. 4, and (ii) the Non-RT RIC, which is
a logical function within SMO that enables non-real-time
control and optimization of RAN elements and resources,
AI/ML workflow including model training, inference and
updates, and policy-based guidance of applications/features
in Near-RT RIC.

It should be noted that in the deployment of SL and USL
algorithms, the ML training host is essentially located in the
Non-RT RIC, while the ML model host/actor can be located
either in the Non-RT RIC or in the Near-RT RIC. On the
contrary, in the framework of reinforcement learning, both
the ML training host and the ML inference host/actor shall
be co-located as part of Non-RT RIC or Near-RT RIC [11].

There are three types of control loops defined in O-RAN
depending on the time sensitivity of the required decision-
making process:

o Control Loop 1 deals with per TTI msec level scheduling

and operates at a time scale of the TTI or above.

o Control Loop 2 operates in the Near-RT RIC and
is responsible for decisions within the range of
10-500 msec and above (resource optimization).

o Control Loop 3 operates in the Non-RT RIC at greater
than 500 msec (policies, orchestration). It is not expected
that these loops are hierarchical but can instead run in
parallel in a heterogeneous or synergetic manner.

Fig. 4 shows the mapping between the O-RAN modules
and the AI/ML phases (training, inference, controlled entity)
in the three O-RAN control loops.

Graphically, Loop 1 refers to the case that the model infer-
ence is hosted in the O-DU and the exact configuration of
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FIGURE 4. Schematic representation of O-RAN control loops. The
Al/ML-dedicated modules and interfaces of O-RAN are depicted (left),
along with involved modules for the training-inference-action sequence
of each control loop (right).

this loop is under consideration. Loops 2 and 3 are clearly
defined as the loops that host the ML training at the Non-RT
RIC, while the ML inference is typically running in Near-RT
RIC and Non-RT RIC, respectively. In general, control loop 1
is justified to host the pretrained model and the inference data
in O-DU, targeting at supporting intelligent operations at the
edge (in the time scale of TTI). Thus, in the case of control
loop 1, the O-DU collects the inference data and provides
predictions or corrective actions to O-RU (actor). In addition,
the related interfaces engaged in control loops 2 and 3 are
well-specified [5], whereas the interface between O-RU and
O-DU (i.e. the Open Fronthaul) for control loop 1 is relatively
understudied with respect to AI/ML model or parameters
exchange.

D. NETWORK-WIDE DATA COLLECTION

As previously mentioned, NT can be viewed as a real time
data collection from various components of the architectural
layers within a 5G network. In this context, two signifi-
cant components are the NWDAF (Network Data Analytics
Function) and the C-MDAF (Centralized Management Data
Analytics Function), shown in Fig. 5, where the former is a
well-specified component of the 5G Core network, according
to 3GPP specifications [32]. The NWDAF collects data from
Core Network Functions and provides network data analytics
services to the SGC Network Functions (NFs) subscribed
as NWDAF consumers [32]. This approach encourages and
allows multivendor deployments and facilitates customiza-
tion to suit individual service needs by the utilization of 3GPP
compliant implementation.

The C-MDAF is provisioned with all the centralized
telemetry capabilities, located at the SMO layer [33]. In this
context, a particular NF can subscribe to the C-MDAF as a
consumer in order to collect or provide management data for
forecasting or resource information purposes. Furthermore,
the Telemetry Data Collector, which is integrated with the
C-MDAF, includes a monitoring server (e.g. Prometheus) for
collecting performance measurement data from the NWDAF,
the virtualized infrastructure and the Transport Network
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elements (TN-EMS). Performance measurement data are also
collected from the O-RAN VNFs using the O1 Virtual Event
Streaming (VES) collector [11].

The NWDAF incorporates the necessary interfaces to col-
lect data from different types of data sources, notably 5G
Core NFs. These data are made available to a Prometheus
monitoring server residing in the NWDAF. In this con-
text, the NWDAF offers two services (called Nnwdaf ser-
vices) [32]. The first one is the Nnwdaf_EventsSubscription
service, which enables the NF service consumers (like PCF,
NSSF, OAM etc.) to subscribe to and unsubscribe from
different analytics events provided by the NWDAF, and
subsequently enables the NWDAF to notify the NF con-
sumers about subscribed events. The second Nnwdaf service
is the Nnwdaf_AnalyticsInfo service, which enables the NF
consumers to request and get specific analytics from the
NWDAF. Both the NWDAF and the C-MDAF provide data
analytics; in this respect, ML-based data analytics are pro-
vided by the ML analytics module (that can be regarded as
part of the AI/ML framework) shown in Fig. 5. In addition,
the Northbound Interface (NBI) is used for the connection
between the NWDAF with external systems like ML frame-
works. Finally, a graphical dashboard (e.g. Grafana) provides
charts and notifications representing the current operational
status of each one of the monitoring sources.

C-MDAF service consumers
(e.g. Slice Manager,
Orchestrator, AlI/ML Designer)

5G Telemetry Data

NWDAF
Collector and C-MDAF

HTTP API Dashboard
(Pub/Sub) (e.g. Grafana)

Dashboard HTTP API
(e.g. Grafana) (Pub/Sub)

Databases

(ST =)
%% =
Nnwdaf API |

VES collector
SBI SBI SsBI

()| O-RAN Elements 5G Core CNFs Other NWDAF
5 (Near-RT RIC, CU, '"'{:Isetr:‘l:i:;"e Tran?_mnE ag‘;”"fk (AMF, PCF, NSSF, || service consumers
~_ DU, RU) SMF, etc) (OAM, C-MDAF)

Monitoring Server

[ Central Monitoring Server (e.g. Prometheus)

(e.g. Prometheus)

FIGURE 5. Network-wide data collection scheme in O-RAN based
architecture. In the left part, telemetry collection supports data gathering
from O-RAN (via VES collector), Infrastructure layer and Transport
Network (via Prometheus exporters). In the right part, the core network
function metrics are collected via NWDAF functionalities to host core
network telemetry.

Ill. SUPERVISED LEARNING SCENARIO

To illustrate a practical implementation of network AI/ML
forecasting, we firstly considered a SL use case. Historically-
gathered cell load time-series were used to train a Recurrent
Neural Network (RNN). To eliminate the vanishing gradient
problem which is usually met in RNNs, we used a Long-
Short Term Memory (LSTM) neural network to predict future
values of the cell loads, based on a specified previous win-
dow of the cell time-course [34]. The cell load prediction
example was selected as a fundamental paradigm in the
network optimization, as the predictive traffic alarms can
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significantly impact several network decisions for scaling
up/down resources, such as slice configuration, channel allo-
cation, power regulation and virtual resource placement [35].
This scenario concerns the Control Loop 2 of the O-RAN
architecture, since the trained cell-specific load predictors can
be deployed as xApps (within the Near-RT RIC) to provide
cell load alarms either in a group of cells (controlled by an
O-CU) or in a particular cell (controlled by an O-DU). The
detailed LSTM technical description and implementation is
described below.

A. DATASET
To illustrate the training process and the AI/ML workflow in
an SL scenario, we used the dataset extracted in [23] (can be
found at https://github.com/sevgicansalih/nwdaf_data). This
dataset contains labeled data for 5G cellular networks, gener-
ated according to 5G specifications. Considering a topology
of 5 partially-overlapped 5G cells with varying:

(1) network area information (i.e., cell identifiers of a group
of associated UEs: ID 1, 2, 3, 4 and 5),

(ii) subscription categories (i.e., the policy of a group of
subscribed UEs: platinum, gold and silver) and

(iii) personal equipment devices (i.e., device type informa-
tion of a UE: IoT device, vehicle, cell phone, smartwatch and
tablet), the dataset contains the data rate (in bytes per 15-min
period) of each category and device type. Apart from confi-
dential/privacy issues raised by operators in sharing network
measurements, the main idea of using this type of information
in our example relies on NT node abilities (e.g. NWDAF)
to collect (i) abnormal behavior for a group of UEs of a
single UE and (ii) network load performance in an area
of interest. Data generation follows realistic assumptions of
the traffic pattern, accounting for spatiotemporal variations
during simulations, such as handovers, UE mobility/velocity,
subscription prioritization, cell adjacency and device-specific
characteristics. Traffic data have been recorded for 6 months
with a sampling frequency of 1 sample per 15 minutes. Since
there are 5 cells, 3 subscription classes and 5 device types,
the dataset contains 75 measures per 15 minutes, resulting
into 6(months) x 30(days) x 24(hours) x 4(quarters) x
75(measures) = 1296000 total samples. The total load of
each cell was computed as the summed data rate across its
associated subscribers and devices. To build the LSTM model
for predicting the total cell load, we split the whole dataset
into training and testing sets. The training set included the
cell load measures during the first 5 months plus the first
3 weeks of the 6™ month, whereas the last week of the
6™ month comprised the testing set. Fig. 6 shows the dataset
organization and splitting, the 5-cell topology and the cell-
specific LSTM predictors under consideration.

B. LSTM REGRESSION

Before LSTM creation and training, all cell load values
of the training set were scaled in the range of [0, 1] to
reduce the contamination of outlier data and eliminated the
skewed distribution effects. The scaled load values of cell i
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FIGURE 6. Cell-specific load prediction outline. The time-series of the cell
load was used to train the LSTM models, exploiting 23-week load data for
training and 1-week load data for inference purposes. Cell load values are
captured every 15 minutes, corresponding to 672 data points per week.

G=1,...,5attimet (r = 1,...,16608) were computed
as follows:
[ norm _ L;, — min{L;} (1
Lt max {L;} — min{L;}

where L; is the training load vector of cell i for each training
point ¢ € [1, 1608]. Normalization was applied only in the
training set to avoid information leakage (testing set should
be unknown to the neural network), whereas the inverse scaler
was applied during the LSTM inference phase.

The feature space was defined by the 2-week pre-
vious (exact) load values (i.e. 2 x 7 x 24 x 4 =
1344 samples), as opposed to window-averaged previous
values used in [23]. Thus, the LSTM regressor is in charge
of predicting the load value L, at time ¢, given the feature
vector [L;_1344, ..., Ls—1]. Fig. 7 shows the architecture of
the LSTM model in rolled and unrolled versions. A Dropout
rate of 20% was also established to eliminate overfitting,
whereas 4 stacked hidden layers (each one with 50 units) were
architected in the model. The loss function used to update
the neural network weights during backpropagation was the
Mean Squared Error (MSE). Hence, whenever a batch of
64 training samples has passed the LSTM layers, the MSE
was computed as the sum of squared differences between the
actual and predicted load values. Stabilization of the LSTM
hyperparameters is shown in “Simulation Results™ section.

IV. REINFORCEMENT LEARNING SCENARIO

In this section, we consider the implementation of a prac-
tical energy-efficiency (EE) optimization algorithm [36].
To illustrate how O-RAN could support distributed intelli-
gence, we trained a multi-agent DRL model. The O-RAN is
jointly optimized in terms of (i) experienced throughput and
(ii) power consumption. Specifically, given the UE measure-
ment reports (collected from the O-RAN), the algorithm aims
to maximize the network EE by providing a power allocation
scheme for all Physical Resource Blocks (PRBs) of all active
Radio Units (RUs). To that end, three interacted DRL agents
are trained on simulated network measurements obtained
from mobile users inside a three-cell area. The implementa-
tion framework starts with a simulation environment in order
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(right) forms. The feature vector for predicting one target sample at time ¢
(L¢) consists of the cell load values of the previous 2 weeks. Four hidden
layers were stacked, each one having 50 hidden LSTM units and 20%
Dropout rate for eliminating overfitting.

to (i) train the DRL agents in synthetic and 5G-compliant
network conditions and (ii) test and validate the deployed
algorithm by using the simulated data for model inference
purposes.

Key motivations in using DRL to solve the EE optimization
problem include:

(i) Suitability for non-convex optimization problems, such
as EE optimization, given that EE-targeted power con-
trol attempts to jointly ensure adequate throughput and
low power consumption, under station-specific power
and user-specific throughput constraints.

(i) Effortless model inference and deployment of DRL
agents, once they are pre-trained.

(iii)) No necessity for training data, since DRL training is
based on trial-and-error interactions between a soft-
ware agent and a real or simulated environment.

A. RAN MEASUREMENT GENERATOR

As shown in the left part of Fig. 8, a 5G network generator
is built to provide O-RAN measurements. A network area
consisting of three 5G urban macro-cells (UMa) is con-
sidered, following the specification of UMa cells detailed
in [24]. Each RU has 12 available PRBs to transmit data
using the OFDM modulation scheme. Inside the network
area, a set of mobile users is established, with each individual
UE experiencing a specific throughput value expressed in
Mbps. At each time instance, each UE follows a random-
walk model with a pedestrian speed of 1 m/s. The algorithm
supports time-varying number of users, given that UEs may
enter or exit the network area, according to their trajecto-
ries. In addition, the network simulator is aware of possible
handovers, since a UE may be served from different RUs
depending on which is the best server for a given time point.
The key functionality of the 5G traffic generator includes the
interference calculations for each UE by not only consider-
ing the channel losses but also the accumulated interference

39587



IEEE Access

A. Giannopoulos et al.: Supporting Intelligence in Disaggregated O-RANs

5G RAN Measurement UE
Generator Measurement
// User Association, Mobility, \‘\ Reports
i W State, Reward
Pathloss, Fading, Interferences - RsSI s
a 3 —>» RSRP
@ & " o
o ANV o A ¥ > RSRQ
Cell 0 % Cell 1, > cal
) —>CELL ID
Q AU y
Ef . Cell 2 Association link RB ID
Uk g > —z_
User [Through-
(Trajectory Interference link—> put
9 Active Inbound O Outbound /
_/mobile User User v Usq[/ ~ 4

Action

FIGURE 8. The interaction cycle between the DRL agents and the
considered RAN environment. The 5G RAN Generator includes the
internal functionality for user mobility, inter-cell interference calculations,
user association and the pathloss/fading estimations according to
5G-compliant channel models. The telecom environment acknowledges
the state and reward to the agents, before the next DRL action.

caused by the non-servers, as specified by the Shannon’s for-
mula. Specifically, the signal-to-interference-plus-noise ratio
is computed for each pair of associated UE-RU, taking into
account the 5G-compliant UMa channel models for mul-
tipath losses [24]. Furthermore, the association scheme is
implemented according to the maximum-throughput crite-
rion, meaning that each UE occupies the PRB from which
it receives the best throughput.

In summary, the traffic generator produces the following

output UE measurement reports:

o Received Strength Signal Indicator (RSSI): measures the
average total received power observed only in OFDM
symbols containing reference symbols in the measure-
ment bandwidth over 12 resource blocks.

o Reference Signal Received Power (RSRP): RSRP is an
RSSI type of measurement, proportional to the power
of the LTE Reference Signals spread over the full band-
width and narrowband.

o Reference Signal Received Quality (RSRQ): Quality
considering also RSSI and the number of used Resource
Blocks measured over the same bandwidth. RSRQ is
a C/I type of measurement. The RSRQ measurement
provides additional information when RSRP is not suf-
ficient to make a reliable handover or cell reselection
decision.

o Channel Quality Indicator (CQI): ranges from
1-15 depending on the quality of the received signal and
the experienced throughput.

e Cell ID: an index representing the serving cell according
to maximum-throughput criterion

e PRB ID: a number indicating the associated PRB of the
serving cell according to maximum-throughput criterion

o Throughput: a value in Mbps reflecting the experienced
throughput from the associated Cell-PRB.

B. DEEP REINFORCEMENT LEARNING AGENTS
In general, DRL models are appropriate for real-time
decision-making problems in complex environments, where
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the knowledge of beneficial future actions is gathered through
trials-and-errors [30]. The agent initially observes the wire-
less environment through the state space S and then randomly
performs an action selected from the available action space
A, leading to a new state of the environment. Depending
on whether the outcome of the performed action was ben-
eficial towards the optimization goal (i.e. towards EE max-
imization), the agent receives a positive, negative or null
reward r and registers this experience tuple (state, action,
new state, reward) in its memory. The agent continues to
experiment with the environment, targeting to ideally per-
form all available actions from A to all possible states of
the environment S and quantifying the profitability of each
action from a given state in the registered experience tuples.
The policy learning process entails the training of the agent
to gradually perform the actions (or a series of actions)
that will return the maximum reward. The quality of each
action, or Q-value, is calculated according to the Bellman
equation [29]:

O (spyar) =1 —a)- Qi1 (s, ar) +a-(r (s, ar)
+v - {Q(st+1,d)}) )

where the parameter « is used to balance between previous
and learned Q-values and y is the discount factor that is used
for trade-off between immediate and long-term rewards. The
fundamental principle of DRL (specifically we use the Deep
Q-Learning method or DQL) is the use of neural networks to
approximate the quality of each action from a given system
state [36].

The framework of decentralized DRL was adopted for
establishing the training process. According to this scheme,
three different DRL agents were deployed and trained for
EE optimization, each one located in the respective cell area.
Note that, the system-level EE (in Mbps/Watt) is computed
as the sum of the total allocated data rate divided by the
total transmitted power of the RUs. The algorithm solves the
EE optimization by taking into account a maximum power
constraint for each RU (Ppax) and a minimum guaranteed
data-rate per user (1 Mbps for Voice over IP). The simplified
DRL scheme included a software agent per cell that, after
observing the underlying environment, decides the proper
action leading to positive rewards. Thus, the objective func-
tion is inherently embodied in the rewarding system of the
DRL to guide the agent’s behavior.

1) STATE SPACE

Each agent located in a respective cell area partially gathers
information from the environment, i.e. observes only the
users that have been associated to his PRBs. To this end, the
state space of each agent is an array with dimension equal to
the PRB number (6 in our case but this can be generalized
depending on the selected 5G numerology) that contains the
channel quality index (CQI) value of the user that is currently
connected to the respective PRB or null otherwise.
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2) ACTION SPACE

Each agent selects a local action, based on its own policy.
The available actions for each agent involve the selection of a
single PRB and either the preservation, increase or decrease
of its power level by a predetermined constant power step Ps.
The individual actions selected by each agent are then com-
bined to form a global action vector, i.e. the power values of
all PRBs in the three cells.

C. REWARD FUNCTION

The reward is calculated globally and is defined to reflect
the optimization target of the algorithm, i.e. the percentage
increase in the current system EE relative to the previous
system EE. Quantitatively, the reward received at episode ¢ is
equal to the EE increment 100 x [(EE; — EE;_1)/EE;_1]
across all RUs and users in the network area. In this man-
ner, although each individual agent has partial observability
of its environment, it is able to “‘sense” the network-wide
environment by receiving the system-level EE increment
(i.e. global reward). For instance, when a cell agent selects
a selfish action based on the observability of its users, it only
contributes in some terms of the global EE formula. By taking
into account the throughput of each user and the power level
of all cells, a global reward is returned to every cell agent,
giving insights to each of them about how globally good were
their local actions.

V. SIMULATION RESULTS

In this section, the outcomes of several simulations are firstly
demonstrated to quantify the performance of the imple-
mented AI/ML models. Those results are given both for
the training and testing phases of the algorithms. Then,
a general-purpose workflow of both supervised and DRL-
based scenarios is proposed to illustrate how diverse types of
AI/ML models can be executed and supported across O-RAN
deployments. We also discuss how the workflow unfolds to
deliver AI/ML functionalities and suggest possible exten-
sions towards a complete AI/ML integration in the O-RAN
architecture.

All the presented simulations were conducted in Python
3.8, whereas the libraries TensorFlow (version 2.3), Keras
and Scikit-Learn were used for constructing and training the
AI/ML models. Coding scripts ran on a personal PC (CPU
i7-8700; 3.2 GHz; RAM 8 GB; no GPU usage).

Noteworthy, for the purposes of this paper, the training
of the models has been conducted offline. In O-RAN, train-
ing could be also performed in the Non-RT RIC. Then, the
models are dockerized and deployed as xApps in a real
commercial Near-RT RIC (control loop 2 of O-RAN). Thus,
the model inference takes place at the Near-RT RIC, with the
predictions/corrective actions being published in the Near-RT
databus for further exploitation.

A. CELL LOAD PREDICTION WITH LSTMs
In the first part of the simulations, the crucial learning hyper-
parameters of the LSTM models are stabilized. Based on
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the similarities in the spatiotemporal fluctuations of the load
traffic between all the neighboring cells considered in the
network area, the learning rate (a) and the window length
(W) hyper-parameters were fine-tuned for one single cell,
and the resulted optimal values were inherited by the rest of
the LSTM models. The configuration of the LSTM model
used for the training process is summarized in Table 1.
Specifically, all training simulations used three hidden lay-
ers, 50 LSTM units per layer and a Dropout rate of 20%
to mitigate overfitting effects. Stochastic Gradient Descent
performed by the Adam optimizer was selected to update the
neural network weights during the back-propagation itera-
tions, while the MSE loss function was selected to estimate
the training errors of the LSTM regressor. Initial simulations
proved that 20 epochs are sufficient for low-valued conver-
gence (~1073) of the loss function.

Observing that different values of the learning rate sig-
nificantly affect the LSTM performance, different models
were derived with varying values (a=0.1, a=0.01, a=0.001).
Fig. 9A depicts the MSE loss convergence among the training
epochs, with the value of a = 0.01 showing the optimal
(i.e. faster and minimum) MSE loss. Moreover, the window
length, which considerably influence the dimensionality and
memory requirement of the LSTM models (directly propor-
tional to the input layer size), was varied for three training
setups (2 weeks or W = 1344, 1 week or W = 672, 1 day
or W = 96 samples). To quantify the optimal value of W,
Fig. 9B shows the MSE loss curves, revealing the optimal
window length for W = 96 samples.

After setting the learning rate and window length to their
optimal values, five LSTM models were trained on the cell-
specific load time-series.

To evaluate the performance of the trained models, infer-
ence samples were derived for the testing set (unseen 1-week
data for each cell). For a given testing sample, the input of
the LSTM is the previous 96 cell load values, whereas the
output is the predicted load in the next 15-min. Fig. 10 illus-
trates the predicted and the actual load values for each cell
during the last (testing) week. Evidently, all LSTM model
showed enhanced performance in predicting the periodic traf-
fic variations. The enhanced performance in all cells might
be explained by the high spatiotemporal traffic similarity
across neighboring network areas, as well as the identical
probabilistic assumptions drawn for the traffic distribution
and mobility profile.

It is also worth noting that LSTM models do not perfectly
fit the peak traffic values (2Gbps maximum deviation from
the actual values), however they accurately predict the traffic
trends, especially the upward and downward slopes of the
cells load.

B. ENERGY-EFFICIENCY WITH DRL

In this section, the training and validation phase of the
multi-agent DRL for EE enhancement is presented. The
ultimate goal of EE maximization is to reduce the power
consumption, without significantly affecting the experienced
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TABLE 1. Architecture of long-short term memory network.

PARAMETER Value

LSTM regression model Sequential (TensorFlow Keras 2.3)

Input Neurons 24x4 =96
Output Neurons 1

Number of hidden layers 4

Hidden units per layer 50
Dropout Rate 20%
Optimizer Adam
Learning rate 0.01

Training set samples
Testing set samples 1X7x24x4 =672

Feature scaling MinMaxScaler (sklearn library)
Training epochs 20

Batch size 64

Loss function Mean Squared Error

(6X30x24x4)-(8%24x4) = 16512

data-rates [37]. The network topology corresponds to that
described in section IV.A. The operating 5G band used in
the simulations was at 6 GHz with a channel bandwidth
of 20 MHz. In addition, the channelization scheme was based
on 5G numerology © = 4. This means that each available
PRB had a bandwidth of 2.88 MHz (consisting of 12 sub-
carriers with spacing 2* x 15 = 240 kHz), whereas the
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Guardband bandwidth was 1360 kHz. Similar to the previous
section, we firstly experimented with varying learning rates
on the DRL model. Note that, here the learning rate (a) refers
to the Bellman equation and is used to balance between the
current and future rewards (see section IV.B). To this end,
Fig. 11 depicts the learning curves during the training phase
of the DRL agents, showing that the reward (i.e. EE enhance-
ments) incrementally reaches the values of 72.3%, when the
learning rate is @ = 0.0001. Following the rewarding defi-
nition, this final reward represents the accumulated % incre-
ment in EE relative to the initial network state of each episode.
This means that, if we infer the DRL agents for purposes of
maximizing the system EE, a gain of 72.3% will be achieved
relative to the initial system EE (without DRL assistance).
The DRL EE increment is relative to the initial system EE,
called “non-DRL”. The initial power configuration is the
‘average’ scheme (all PRBs of all RUs operate with the fixed
average power levels). The selection criterion for this initial
network state relies on the fact that an ‘average’ power con-
figuration scheme provides a reasonable three-fold balance
between power consumption (there are no maximum power
levels), achieved throughput (there are no minimum power
levels) and interference mitigation. The impact of discount
factor was negligible in the reward convergence, thereby it
was constantly set to 0.9, whereas the power step was selected
at 5 Watt following similar simulations as in [36].
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FIGURE 11. Reward convergence of the multi-agent DRL scheme for
different learning rates (a) as a function of the training episodes.

Before validating the pre-trained DRL schemes, Table 2
summarizes the final (optimal) parameters included in the
Deep Q-Networks.

TABLE 2. Architecture of multi-agent deep Q-networks.

PARAMETER Value
Number of DRL agents 3
Input Neurons 12
Output Neurons 24
Number of hidden layers 3

96, 72, 48 (1%, 2™ and 3™ layer)
ReLU (for hidden layers),
Linear (for output layer)

Hidden units per layer

Activation function

Replay Memory Size 1000
Batch size 64
Optimizer Adam
Loss Function Huber loss
Update Target Frequency 100
Learning rate 0.0001
Discount Factor 0.9

e-greedy policy Linear decay (up to 10k episodes)

Training Episodes 20000
Testing Episodes 100
Power Step (Watt) 5

The DRL performance was assessed by inferring the
trained agents in 100 different episodes. Each episode was
configured with random number of users, user positioning
and user mobility speed (1 m/s for pedestrians, 15 m/s for
vehicles). Fig. 12 shows the achieved DRL performance in
the 100 scenarios, including (i) the total consumed power
(summed across PRBs and RU power levels), (ii) the total
allocated throughput (summed across users’ data-rates) and
(iii) the final achieved EE. Also, the bar-plots quantify both
the mean consumed power and achieved throughput (aver-
aged across the validation scenarios). Overall, the DRL-
assisted EE optimization can significantly reduce the power
consumption of the system (~50 Watt or 40% power sav-
ings), while ensuring slightly enhanced throughput allocation
(~4Mbps), compared with the initial system state. By divid-
ing the throughput by the consumed power curves and taking
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the mean across the 100 scenarios, DRL-assisted solution
provides an average EE of 1.31 Mbps/Watt, whereas the non-
DRL power allocation shows an EE of 0.66 Mbps/Watt.
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FIGURE 12. Consumed power (upper panel) and allocated throughput
(lower panel) resulted from 100 validation episodes. Bar plots depict the
average (across the 100 validation scenarios) allocated power and
throughput of the non-DRL-assisted and DRL-assisted power regulation.

C. WORKFLOW OF O-RAN INTELLIGENCE

In this section, we describe in detail the workflow of AI/ML
in O-RAN-based 5G system architectures. This general-
purpose illustration targets to elucidate the involved architec-
tural blocks (boxes) and the respective interlinking actions
(arrows) required to support AI/ML functionalities. A unique
UML diagram is suggested in Fig. 13, aiming to host both
SL-based and RL-based models. Without loss of generality,
the proposed intelligence loop refers to the control loop 2 of
O-RAN specifications, given that the Near-RT RIC is the key
intelligence actor. The workflow is divided into 6 discrete
stages:

1) MODEL CONSTRUCTION

The process starts with the model construction phase, includ-
ing an ML developer initiating a programming environ-
ment and formulating an ML model. This procedure may be
accomplished using widely established development toolKkits,
such as Python libraries (Keras, Tensorflow, PyTorch) or
AI/ML platforms (e.g. AcumosAl, Airflow). At the end of the
design process, the Orchestrator located in SMO is acknowl-
edged for the upcoming model training via a description file.
Notably, this process may support the intent-based manage-
ment, meaning that the Orchestrator can check whether the
described objective-specific model already exists in the ML
catalogue.

2) MODEL TRAINING

Afterwards, the Orchestrator sends the description file to the
ML Model Trainer in order to initialize the training process.
Then, a particular subset of the data gathered by the Data
Collector is selected from the ML Model Trainer to repre-
sent the training samples. The training procedure exploits
the description file to construct the AI/ML model with the
reported architectural parameters (dimensionality, number of
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FIGURE 13. General-purpose UML diagram of the Al/ML delivery cycle in O-RAN based 5G system architectures. The workflow is divided in six
(A-F) discrete stages, illustrating the complete Al/ML provision, spanning from the model construction to the model evaluation/update stages.
Background colored components index their respective location (red: SMO, green: 0-RAN), whereas the white “opt” boxes depict “optional” or

“conditional” entries in the pipeline.

hidden layers, loss function, etc.). The hyperparameter fine-
tuning takes place in the ML Model Trainer using widely-
known tools (e.g. Tensorboard).

3) MODEL DEPLOYMENT

Once the model is stabilized with the optimal hyperpa-
rameters, it is sent back to the Orchestrator, where the
packaging/dockerization (accompanied with the associated
license and/or metadata) is achieved by the standardized tools
(e.g. Docker, MLOps). Then, the trained model is stored in the
ML Catalogue, being available for intent-based multi-vendor
exploitation. Finally, the Orchestrator is also responsible for
deploying the packaged trained model to the Near-RT RIC,
hosting the model inference in the O-RAN part of the 5G
network.

39592

4) MODEL INFERENCE

Near-real inference iterations are continuously performed
during the O-RAN operation, with the Near-RT RIC col-
lecting data from the O-RAN elements (O-RU, O-DU,
O-CU and/or eNB nodes for non-standalone deployments).
For instance, the collected data for the presented LSTM
scenario would be the 96 previous values of the total cell
load in the operating cells and the inference outcome would
be the next (after 15 min) predicted traffic in Gbps. In the
DRL scenario, the collected data would represent the current
time slot CQI values of each active PRB and cell, and after
inferring the multi-agent model, the Near-RT RIC applies the
suggestive power regulation actions to the O-RAN nodes.
Note that, the corrective action in the DRL case is directly
provided by the inference outcome, whereas the LSTM model
simply provides a predicted traffic value to the Near-RT RIC.
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In this case, an internal policy could be predefined in the
Near-RT RIC to create alerts on extreme traffic conditions,
along with the respective corrective actions. Finally, the Near-
RT RIC extracts evaluation metrics resulted from the applied
action (e.g. the EE increment in the DRL scenario).

5) MODEL EVALUATION

For performance monitoring (PM) purposes, the collected
data from the O-RAN elements are also sent to the Data Col-
lector via the O1/PM interface, along with performance data
from the Near-RT RIC. Then, the ML Model Evaluator entity
exploits the PM data to quantify whether a model re-training
is needed or not. This can be achieved by either a threshold-
based policy (update is required when PM data exceeds a
predefined value) or a trend analysis investigation (update is
required when a negative-going PM curve is observed).

6) MODEL UPDATE

In case that a retraining alarm is triggered, the ML Model
Evaluator notifies the Orchestrator for the required model
update. The Orchestrator then selects between two options,
depending on whether an appropriate high-performance
model is already available in the ML Catalogue (potentially
provided by other vendors) or not. In the latter case, a new
ML training cycle is initiated, with the ML Model Trainer
reinitiating the training procedure using an extended training
dataset collapsed with recently gathered data. Finally, a com-
pletely different model designing is also supported in case
that the previous two options do not suffice.

Noteworthy, although here we presented the near-RT RIC
engagement in the control of the network (control loop 2),
the described AI/ML workflow can be effortlessly extended
to support the other O-RAN control loops as well, following
similar steps. For instance, the control loop 1 (involving
CU/DU as the inference host) could be easily adapted, espe-
cially to serve DRL algorithms. In that case, the model will be
deployed directly at the CU/DU component and the inference
data will be collected through the Open-FH interface. This
interface will be also utilized for applying the final corrective
actions.

Moreover, the AI/ML workflow can be also extended
with minor changes to host the control loop 3, especially
in the SL case. For example, to include the non-RT RIC
in the considered SL intelligence loop, the model could be
directly deployed in the SMO, whereas the traffic prediction
could be exploited by another component/subject of action
(e.g. Orchestrator). This module can then take corrective
actions (e.g. threshold-based alarm triggering) and apply
them to the O-RAN network entities (e.g. different allocation
between network slices) through the O1 interface. Finally,
various collaborative models can simultaneously run in the
different control loops, meaning that a model running in
control loop 3 can also supervise control loop 2 models.

Finally, some key limitations in using synthetic or simu-
lated data for training the AI/ML models should be identified.
Real operators’ data are difficult to be obtained, given the
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privacy and confidential issues in publishing/sharing real
traffic data. Based on the above considerations, in this study,
we relied on (i) a realistic-but-synthetic dataset for training
the LSTM models and (ii) a 5G network measurement gen-
erator for training the DRL agents. The selection criteria for
the LSTM dataset were primarily (i) the compliance of the
spatiotemporal traffic patterns for 5G networks with 3GPP
standards, using the fields (Data rate, Network area informa-
tion, Subscription categories, Personal equipment ID), and
(ii) the realistic assumptions in traffic properties, such as the
mean handover ratios according to the time of the day [23].
On the other hand, DRL model training relies on the chan-
nel estimations provided by the 5G measurement generator.
Channel imperfections are expected to be relatively reduced,
given that path losses are calculated based on the empiri-
cal 3GPP standards for UMa cells, as well as the agent is
trained on discretized (and not the exact) channel coefficients
(i.e. the CQI values). In any case, the training of models on
real network data may result into model performance varia-
tions, thus a soft retraining on some real data is always sug-
gested prior deploying the proposed models in real network
environments.

VI. CONCLUSION

In summary, O-RAN currently comprises the most attrac-
tive solution for deploying the next-generation multi-vendor
networks, embracing the ideas of open, programmable, col-
laborative and intelligent communications. In this context,
this paper gave an overview of the key architectural prin-
ciples underlying the O-RANS, especially focusing on the
AI/ML components involved in the architecture. A high-level
overview of the network-wide data collection functionalities
was also proposed to ensure collection of training data both
in the radio access and core network parts. To give concrete
use cases on how the AI/ML can be efficiently supported in
the O-RAN based 5G systems, two optimization scenarios
were presented, namely (i) a cell load predictive model using
LSTMs and (ii) an energy efficiency-targeted model using
distributed DRL agents. After quantitatively training and val-
idating the AI/ML models, we presented a general-purpose
workflow for the AI/ML model construction, delivery and
evaluation. Several modifications in the described workflow
can be adopted in the future, depending on operator-oriented
requirements, technical preferences or architectural differ-
ences, however the key steps of AI/ML pipeline are discussed.
Overall, this paper provides evidence on how an open and
disaggregated RAN deployment can support predictive and
optimization objectives, useful both for researchers and prac-
titioners who drive the O-RAN and B5G evolution.
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